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Abstract 

Background Recent decades have witnessed a steady decrease in the use of race categories in genomic studies. 
While studies that still include race categories vary in goal and type, these categories already build on a history dur‑
ing which racial color lines have been enforced and adjusted in the service of social and political systems of power 
and disenfranchisement. For early modern classification systems, data collection was also considerably arbitrary 
and limited. Fixed, discrete classifications have limited the study of human genomic variation and disrupted widely 
spread genetic and phenotypic continuums across geographic scales. Relatedly, the use of broad and predefined clas‑
sification schemes—e.g. continent‑based—across traits can risk missing important trait‑specific genomic signals.

Methods To address these issues, we introduce a dynamic approach to clustering human genomics cohorts based 
on genomic variation in trait‑specific loci and without using a set of predefined categories. We tested the approach 
on whole‑exome sequencing datasets in ten cancer types and partitioned them based on germline variants in can‑
cer‑relevant genes that could confer cancer type‑specific disease predisposition.

Results Results demonstrate clustering patterns that transcend discrete continent‑based categories across cancer 
types. Functional analysis based on cancer type‑specific clusterings also captures the fundamental biological pro‑
cesses underlying cancer, differentiates between dynamic clusters on a functional level, and identifies novel potential 
drivers overlooked by a predefined continent‑based clustering.

Conclusions Through a trait‑based lens, the dynamic clustering approach reveals genomic patterns that transcend 
predefined classification categories. We propose that coupled with diverse data collection, new clustering approaches 
have the potential to draw a more complete portrait of genomic variation and to address, in parallel, technical 
and social aspects of its study.

Keywords Genetic variation, Cancer genomics, Classification, Ancestry, Ethnicity, Race

*Correspondence:
Hussein Mohsen
hussein.mohsen@utoronto.ca
1 Computational and Systems Biology, Memorial Sloan Kettering Cancer 
Center, New York, NY 10065, USA
2 Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 
New York, NY 10065, USA
3 Terrence Donnelly Centre for Cellular and Biomolecular Research, 
University of Toronto, Toronto, ON M5S 3E1, Canada
4 Breast Medical Oncology, School of Medicine, Yale University, New 
Haven, CT 06511, USA
5 Computer Science, Yale University, New Haven, CT 06511, USA
6 Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 
06511, USA

7 Computational Biology and Medicine, Weill‑Cornell Medical College, 
New York, NY 10065, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-025-02154-z&domain=pdf


Page 2 of 15Mohsen et al. BMC Medical Genomics           (2025) 18:87 

Background
In light of the growing availability of genomics datasets 
and the subsequent analyses of the complexities underly-
ing both the human genome and genomic variation, the 
use of a fixed, predefined set of categories comes across 
as reductionist at best. In this paper, we utilize a quali-
tative (i.e. historical) and quantitative lens to highlight 
descriptive and applied problems underlying the use of 
broad discrete categories, including on a predefined con-
tinent-based level. Consequently, we present a dynamic 
trait-specific lens that clusters a genomics cohort’s data 
based on variation in genomic loci associated with a trait 
under study without centering a predefined set of catego-
ries. We next demonstrate the utility of this lens in study-
ing ten cancer types as examples of highly complex traits 
by identifying known and overlooked patterns on the 
clinical and functional genomic levels.

Historical perspective
The earliest scientific attempt to use race as a category to 
classify human beings dates back to the seventeenth cen-
tury. In a 1684 essay titled, “A New Division of the Earth, 
According to the Different Species or Races of Men Who 
Inhabit it,” French physician Francois Bernier categorized 
human beings into five types, the last of which, the Sámi 
people, he described using derogatory terms [1]. Swedish 
botanist Carl Linnaeus, dubbed as the founder of mod-
ern taxonomy, published decades later (1735) the first 
edition of Systema Naturae, in which he created a system 
with four categories instead. In the tenth edition (1758), 
he expanded the system and confounded physical with 
personality and social traits based on his interpretation 
of the humoral theory that links geography and climate 
to skin color and good and bad character [2]. In this 
work, Linnaeus loaded his classifications with prejudice 
and crafted a hierarchy placing Homo sapiens europaeus, 
a category he color-coded as white, on top, while using 
descriptions such as “harsh face,” “careless,” “stubborn,” 
“lazy,” “greedy,” and “ruled by caprice” to describe Homo 
sapiens americanus, afer and asiaticus, color-coded 
respectively as red, black, and yellow [1, 3, 4]. Linnaeus 
also added a separate category he called Homo sapiens 
monstrosus, in which he mostly included humans with 
various birth defects and mythical “humans” such as 
giants from Patagonia [2–5].

Bernier and Linnaeus suggested different sets of cat-
egories and imbued their human classification systems 
with imagined hierarchical value judgement. Their 
imposition of a few, fixed, distinct and discrete cat-
egories reduced the complexity of human variation and 
shaped subsequent classification systems. In early sys-
tems of classification, descriptions often depended on 
the philosophical (and political) choices of the classifiers, 

technological limitations, and economic factors including 
trade routes [2, 6]. For instance, the routes involving Swe-
den and the Netherlands during Linnaeus’ time shaped 
his considerably arbitrary choice to describe peoples of 
specific geographies but not others. Further, Linnaeus 
relied on anecdotal and written accounts of his students 
and of missionaries, mercantilists, travelers, and slave 
traders, and he did not travel himself outside of western 
Europe [2, 4].

Early classification systems were also venues for the 
use of emerging modern science to demarcate human 
difference in the service of power during times of colo-
nial expansions and the Atlantic slave trade. Institutions 
and individuals exerted intentional efforts to create racial 
classification systems in modern science, which opened 
the door for racialized hypothesis generation. In a stark 
yet far from lone example, the Bordeaux Royal Acad-
emy of Science announced an essay contest in 1739 to 
study “the degeneration of Black hair and Black skin.” 
The announcement was made a year after the regional 
assembly of Bordeaux endorsed the existence of enslaved 
Black people on French soil, and as recently described 
in “Who’s Black and Why: A Hidden Chapter from the 
Eighteenth-Century Invention of Race,” before members 
of the Bordeaux Academy decided to invest Academy 
prize money in the company that ran the French slave 
trade in the African continent, Compagnie Perpétuelle 
des Indes [7]. Another example of a (re)defined color 
line to benefit the interests of chattel slavery before its 
abolition in the United States is the introduction of “one 
drop laws,” according to which a person was categorized 
Black if they had a known “trace of Black blood” in their 
ancestry. As a result, in the words of anthropologist Nina 
Jablonski, skin color was “no longer the necessary and 
sufficient criterion for race classification” [2] (for more 
examples, see [8, 9] and references listed in Box  1–1 of 
[10]).

Changing meanings of race categories continued to 
reflect and drive political and social transformations. 
Since the beginning of the first U.S. census in 1790, for 
example, racial groupings in the census have changed 
more than twenty times [1]. Notably, race categories and 
their meanings also vary across national borders [1, 10]. 
Biology and medicine are susceptible to societal and cul-
tural influences, and scientists are engaged in a bi-direc-
tional process of being influenced by social and cultural 
concepts that co-shape interpretations of nature, and sci-
entific interpretations that in turn influence social order 
[11, 12]. Scientific attempts to formulate classification 
systems of race continued in the nineteenth and twenti-
eth centuries and were muddled, again, with confusion. 
In the words of anthropologist Fay-Cooper Cole during 
the opening of the “Conference on Racial Differences,” 
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which was held in 1928 at the National Academy in 
Washington, D.C. and attended by opponents and propo-
nents of eugenics, the term “race” was “frequently used in 
three or four ways in the same article,” and there existed 
“a great deal of confusion in the use of the word.” [13] 
Eugenics, which propagated race science for more than 
six decades, declined during the 1930 s and 1940 s after 
it faced strong scrutiny and criticism within scientific cir-
cles and in response to Nazi eugenical horrors. Yet, the 
use of racial classification systems to study human vari-
ation continued [13]. The understanding of human vari-
ation has progressed since then, however, and further 
highlighted their unreliability.

Further limitations
Even with respect to skin color as a trait, the reduction 
of human variation into a small set of color-coded cate-
gories implies the existence of distinct skin color lines—
when skin color is a continuum influenced by climate, 
genetics, and the intensity and seasonality of ultravio-
let radiation [2]. Similar skin colors can also result from 
convergent adaptation in response to similar selective 
pressures, rather than from genetic relatedness [2, 14], 
and further analysis and data collection demonstrated 
the prevalence of continuous rather than discrete skin 
color distributions (e.g. [15, 16]). Further, comprehen-
sive diverse genomics datasets have demonstrated (i) the 
complexity and prevalence of continuums on the genome 
level (e.g. [17]), and (ii) the sharp limitations of broadly 
predefined classification—be it at the level of socio-polit-
ical categories such as race and ethnicity, or broad geo-
graphic ones such as continental ancestry (e.g. [18]).

While genetic ancestry is a concept that describes a 
partial relationship of a person with their genealogical 
history, it can still be subject to significant limitations as 
a classification criterion. First, there is no single criterion 
to define ancestry, and categories can take geographic 
(e.g. South Asian or Central American), geopolitical (e.g. 
Zambian or Italian), or cultural (e.g. Brahmin or Lemba) 
meanings [14]. Second, geographic ancestry categories 
might be muddled with imprecise conflation with race 
categories, and their descriptors can be distortive of 
time and space (e.g. references to Asian ancestry might 
exclude the entirety of or wide regions within West, Cen-
tral, East or South Asia, and nationality-based categories 
might refer to ancestors during the period that preceded 
the very formation of respective countries). Third, conti-
nent-based categories reduce the high levels of genomic 
complexity within each continent and might inadvert-
ently imply a nonexistent “purity” when communicating 
results. Fourth, separate categories impose discreteness 
on continuums between continents [14, 17, 19–21] that 
have long been connected by land (e.g. Asia and Europe, 

or today’s Asia and Africa through the Sinai Peninsula), 
in technology, or both.

Further, single category assignments to individuals 
ignore the multitudes of personal belonging. While many 
individuals choose to affiliate with multiple groups for 
personal or cultural reasons [14], it is also highly com-
mon for individuals to have a genetic ancestry associ-
ated with multiple groups in sets of predefined categories 
or genetic panels (e.g. 97.3% of individuals are associ-
ated with a median of four ancestry categories in [18], 
in consistence with [22]). Importantly, this ancestry can 
be observed on the individual level and does not have 
to reflect population stratification. Further, significant 
amounts of genetic ancestry labeled as “Western Asian,” 
for example, is present in samples with origins ranging 
from present-day Morocco to Mongolia, and from Eng-
land to Ethiopia, that is, in Asia, Europe and Africa [18].

Dynamic, trait‑specific germline clustering
Given the limitations of predefined classification systems, 
and recognizing the wide range of phenotypes and the 
complexity of genomic variation, we propose a dynamic 
approach that generates trait-specific clusterings of 
genomics cohorts. The approach builds on an earlier 
idea from an exchange between biological anthropologist 
Frank B. Livingstone and evolutionary biologist Theodo-
sius Dobzhansky on generating clusterings on the gene(s) 
level (see [23] and Chapter 9 of [13]), and expands it in 
light of the wide advances in genomic data collection, 
measurement of genomic variation, and interpretation of 
the genomic basis of complex traits. The approach is also 
motivated by multiple factors. First, the genomic basis of 
different traits is encoded in different loci of the human 
genome, and the loci relevant for a single trait, ranging 
from one to many in number, cover only a small por-
tion of the whole genome. Second, biological and physi-
ological processes are shared among all humans. Third, 
especially when common germline polymorphisms are 
involved in part or in full in trait predisposition, the 
genomic variants are significantly shared across conti-
nental regions. Relatedly, a single nucleotide polymor-
phism (SNP) can be concurrently classified “rare” in 
multiple regions, and the distribution of classifications 
depends on available data [24].

Fourth, evolutionary forces might be acting on trait-
specific genomic regions in parallel in distant geogra-
phies. Fifth, as predefined ancestral labels concurrently 
bear geopolitical, historical, and social meanings, their 
assignment to categories used to study genomic varia-
tion, and particularly predisposition to disease, opens the 
door for prolonging a history of stigmatizing entire com-
munities [25].
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Finally, the disruption of observed continental clines 
can overlook inter-continental patterns related to a trait 
of interest. This raises a core question on the goal of clus-
tering cohorts: if two individuals in distant geographies 
have similar genomic markers and phenotypic expres-
sion corresponding to a trait, e.g. both are right-handed, 
should they be in the same cluster when studying the 
genomic basis of handedness, or separate ones? Should 
“populations” be determined based on a gene(s) (or trait) 
of interest, or the whole genome? What are the limita-
tions of clustering based on the whole genome, in a frag-
mented and data-scarce setting, when a trait is affected 
by only a small subset of genomic regions? Further, it is 
also quantitatively well-established that selected features 
or clustering criteria strongly affect resulting “popula-
tions” (i.e. clusters or clines), and consequently reshape 
the starting point from which to discover—or miss—pat-
terns and generate hypotheses [26, 27].

The dynamic clustering approach takes a different angle 
to classifying genomic variation by grouping individuals 
in a given cohort based on predisposition to a trait under 
study—herein a cancer type. An individual’s membership 
to a cluster depends on their genomic sequence at a spe-
cific set of regions known to be associated with the trait. 
Number of clusters, which are de facto neutrally labelled, 
is determined according to the dataset and specific trait 
under study.

In cancer, germline (inherited) predisposition is medi-
ated by deleterious mutations in several dozen high pene-
trance cancer-relevant genes and probably a combination 
of individually low penetrance variants. Different genes 
are associated with different degrees of risk, and with 
variable cancer-specificity [28]. Further, germline altera-
tions require additional acquired (somatic) mutations 
for malignant transformation [29–31]. We hypothesize 
that clustering cancers based on their germline variants 
in cancer type-specific loci transcends predefined con-
tinent-based categories. We expect clusterings to vary 
across cancers—in terms of number of clusters and 
sample-cluster membership—in reflection of the varying 
levels of complexity underlying their genomic compo-
nent. We also note that this dynamic (i.e. trait-specific) 
approach moves beyond the notion of local ancestry at a 
single locus as it can simultaneously consider any set of 
coding or non-coding regions associated with a (healthy 
or disease) trait, and it can scale to accommodate newly 
acquired knowledge on the genomic basis of the trait 
under study.

Methods
Genomic datasets
We used TCGA germline data from the breast inva-
sive carcinoma (BRCA, n = 1072 samples after data 

processing), colon adenocarcinoma (COAD, 445), kidney 
renal clear cell carcinoma (KIRC, 514), liver hepatocellu-
lar carcinoma (LIHC, 360), lung adenocarcinoma (LUAD, 
513), lung squamous cell carcinoma (LUSC, 503), ovar-
ian serous cystadenocarcinoma (OV, 556), pancreatic 
adenocarcinoma (PAAD, 182), prostate adenocarcinoma 
(PRAD, 488), and rectum adenocarcinoma (READ, 164) 
studies. We used the MC3 somatic dataset [32] filtered 
according to the recommendations in [33] for potential 
driver identification and the ancestral labels obtained 
from the TCGAA Project (http:// fcgpo rtal. org/ TCGAA/) 
[34].

SNP selection
For COSMIC-based SNP sets, we selected autosomal 
SNPs annotated as nonsynonymous, stop-gain, and stop-
loss ClinVar database annotations [35]. For HFI subsets, 
the functional impact of missense germline variants 
within a cancer type’s exome samples was determined 
using MetaSVM [36], SIFT [37], and MutationAsse-
sor [38], and annotations by ClinVar (v20190305), when 
available. We considered a missense variant to have a 
high functional impact if it is categorized as Deleteri-
ous by MetaSVM or SIFT, High/Medium by Mutatio-
nAssesor, or Pathogenic/Likely Pathogenic in ClinVar. 
We used MetaSVM, SIFT and MutationAssesor scores 
from the dbNSFP database (v35c via ANNOVAR [39]) 
which includes pre-calculated function impact scores for 
75,931,005 human non-synonymous single-nucleotide 
variants [40]. We only included autosomal variants with 
GQ > 20 and alternative allele frequency > 20% and which 
met quality control measures described in Huang et  al. 
[30]. The selected SNPs in each COSMIC and HFI vari-
ant set are listed in Supplementary Table 4.

Driver gene identification
Potential driver gene identification was performed on the 
MutSigCV [41] v1.3.4 server available at https:// www. 
genep attern. org/ modul es/ docs/ MutSi gCV. Genes with 
q < 0.1 were deemed statistically significant potential 
drivers.

Clinical variable analysis
Continuous and ordinal variable comparisons (i.e. for 
age, tumor grade, and tumor stage) were performed 
using the Wilcoxon rank-sum test in a one-vs-all configu-
ration on clusters with > 5% of samples within a cohort 
and COSMIC or HFI setting, with Bonferroni correction 
and padj < 0.05 significance level.

Gene expression analysis
Differential expression analysis was performed using 
Moonlight v1.20 [42] (FDR < 0.05) at the gene program 

http://fcgportal.org/TCGAA/
https://www.genepattern.org/modules/docs/MutSigCV
https://www.genepattern.org/modules/docs/MutSigCV
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level and edgeR v3.36 [43] (FDR < 0.05, |Log2 FC|> 2) at 
the gene level.

Enrichment analysis
Enrichment analysis to identify pathways and biologi-
cal processes was performed on g:Profiler available at 
https:// biit. cs. ut. ee/ gprofi ler/, with entities having g:SCS 
threshold < 0.05 considered significant [44]. Visualization 
was done using ggplot2 [45], except for Fig. 6 generated 
using EnrichmentMap v.3.5.0 plugin [46] in Cytoscape v 
3.10.3 [47].

MDS plotting and algorithmic clustering
We used PLINK v1.90 [48] available at https:// zzz. bwh. 
harva rd. edu/ plink/ to calculate identity-by-state matrices 
(IBS) based on the allele values of the chosen variant set 
in each cohort, where sample pairs with closer genomic 
variant composition result in higher similarity values 
(--distance ibs in PLINK). IBS matrices were then used 
to generate input distance matrices (1 – IBS matrix) to 
classical multidimensional scaling (MDS), which is a 
dimensionality reduction algorithm that aims to preserve 
distances between samples in a lower dimensional space 
(cmdscale in the stats package in R: https:// stat. ethz. 
ch/R- manual/ R- devel/ libra ry/ stats/ html/ 00Ind ex. html). 
For algorithmic clustering comparison (Fig. 3), DBSCAN 
clusters were identified using the dbscan package in R 
(https:// cran.r- proje ct. org/ web/ packa ges/ dbscan/ index. 
html) [49], and HClust (hclust) and K-Means (kmeans) 
using the stats package.

Results
Overview
To study predisposition to ten of the most common 
cancer types [50], we utilized germline data from the 
Cancer Genome Atlas (TCGA) [28, 30] and ancestral 
category values from the The Cancer Genetic Ances-
try Atlas (TCGAA) [34]—which are based on compari-
sons with the 1000 Genomes [51], the Human Genome 
Diversity (HGDP) [52] and the International HapMap 
[53] Projects. In studied cohorts, TCGAA uses catego-
ries that refer to continental and sub-continental regions. 
For clarity, we hereafter refer to them collectively as 
continent-based.

We first generated the trait-specific clusterings of each 
cohort, namely BRCA, COAD, KIRC, LIHC, LUAD, 
LUSC, OV, PAAD, PRAD, and READ, using all nonsyn-
onymous SNPs within different sets of COSMIC genes 
known to have germline association with each can-
cer type (Methods, Supplementary Table  3). Next, we 
focused on the SNP subset predicted to have high func-
tional impact within each cancer type’s samples as a basis 
for dynamically generating clusters. We then assessed the 

performance of three algorithmic clustering approaches 
(K-means, DBSCAN, and HClust) to identify generated 
clusters in multidimensional scaling (MDS) plots. Finally, 
we identified potentially overlooked somatic driver genes 
in each TCGA cohort based on dynamic clustering in 
comparison with drivers identified using a continent-
based lens, and performed a functional genomic analysis 
to assess their biological and clinical importance in the 
context of cancer.

Beyond continent‑based categories
Upon dynamically clustering based on trait-specific 
regions—herein cancer type-specific germline COSMIC 
genes, a number of visual patterns emerge. First, the 
number of clusters varies per cancer type (1–8 clusters), 
strongly reflecting known genomic heterogeneity in can-
cer [28, 30, 54] (Fig. 1). Second, and despite the relative 
lack of diversity in TCGA datasets, clusters transcend 
continent-based categories in all cancer types to include 
samples with “African,” “East Asian,” “European,” and 
“Other” ancestral labels within clusters. Third, this pat-
tern is also observed in colon and rectum cancers, known 
to be associated with high disparities in incidence and 
outcome [55, 56], with one and two clusters (Fig. 1b and 
1j), respectively.

High‑functional‑impact compact clusters
Next, we selected subsets of SNP variants with high 
functional impact (HFI) on protein function within the 
COSMIC genes corresponding to each TCGA cohort as 
a basis for clustering (see Methods). This selection led 
to SNP subsets with n = 1 (PRAD) to 269 (BRCA). HFI-
based dynamic clusters transcend continent-based cate-
gories and exhibit two notable patterns. First, the number 
of HFI-based clusters is higher, on average, than clusters 
based on all nonsynonymous SNPs of COSMIC genes 
(e.g. PAAD with two COSMIC-based vs four HFI-based 
clusters in Fig.  1h and Fig.  2a, respectively; HFI-based 
clusters for other cancer types in Supplementary Fig. 1). 
Second, subsections within select cancer types tend to be 
compact and often include samples with highly similar or 
identical HFI variant patterns due to the smaller number 
of loci used for clustering in these cohorts. Dots corre-
sponding to distinct samples overlay each other,

Human aid improves algorithmic clustering
Algorithmic approaches can generate different cluster-
ings of the same dataset, and their performance primar-
ily depends on data distribution and cluster definition 
[27, 57]. To algorithmically identify clusters, we ran the 
K-means algorithm with a predefined k = 4 (number of 
selected TCGAA continent-based categories) and an 
“optimal” k chosen based on visual inspection of cancer 

https://biit.cs.ut.ee/gprofiler/
https://zzz.bwh.harvard.edu/plink/
https://zzz.bwh.harvard.edu/plink/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://cran.r-project.org/web/packages/dbscan/index.html
https://cran.r-project.org/web/packages/dbscan/index.html
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type-specific plots. Given the varying number of clusters 
across cancer types, predefined-k clustering performed 
poorly across multiple cancer types (Fig.  3a-d). Simi-
larly, dynamic-k K-means faced challenges in accurately 

identifying clusters across cohorts (e.g. LIHC-COSMIC, 
Fig. 3e; Supplementary Fig. 2).

Similarly, clustering results from two other algo-
rithms, DBSCAN (Density-based Spatial Clustering of 

Fig. 1 Multidimensional scaling (MDS) plots of dynamically generated clusters for ten TCGA cancer cohorts. Cancer type‑specific dynamic clusters 
transcend predefined continent‑based categories. Dynamic cluster numbers (i.e. C1, C2, … C8) correspond to disjoint sample subsets within each 
cancer cohort. resulting in single dots each representing a subcluster (e.g. LUSC‑HFI in Fig. 2b and KIRC‑HFI in Supplementary Fig. 1).
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Applications with Noise) and HClust, performed poorly 
in multiple cohorts. HClust, which stands for agglom-
erative hierarchical clustering—herein used with com-
plete-linkage, is a bottom-up approach that starts with 
individual points as separate clusters and iteratively 
merges most similar clusters until a predefined number 
of clusters is met (e.g. k = 8 clusters for LIHC-COSMIC 
in Fig.  3f ). Like K-means, HClust correctly identified 
only a subset (i.e. two) of the eight clusters in LIHC-
COSMIC. DBSCAN, which is known to identify dense 
clusters and outliers in low-density regions, partitioned 

LIHC-COSMIC results into three clusters (Fig.  3g), a 
number decided algorithmically based on input param-
eters (see Methods): two large clusters, each roughly 
with four of the dynamic clusters, and a third cluster that 
includes distant samples the algorithm considered out-
liers (in red). Notably, DBSCAN faced more limitations 
with other cancer types such as READ and PAAD (Sup-
plementary Fig. 4).

In sum, and while specific algorithms perform bet-
ter than others at identifying clusters, algorithmic clus-
tering does not seem to suffice for both COSMIC- and 

Fig. 2 MDS plots of dynamically generated clusters based on high‑functional‑impact (HFI) germline variant subsets. a PAAD results demonstrate 
a higher number of clusters in HFI‑based results compared to ones based on all nonsynonymous variants in the COSMIC‑based setting in Fig. 1h. b 
LUSC results demonstrate compact clusters with a high number of samples demonstrating similar or identical variation patterns in HFI subsets
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HFI-based settings (Supplementary Figs.  2–7). As a 
result, human intervention to attain more precise results 
remains central (e.g. Fig. 3h). We also note that in certain 
instances, multiple “optimal” numbers of clusters in the 
same plot can exist, and the choice remains centered on 
experimental goals and the problem under study (e.g. the 
four dynamic clusters of BRCA-COSMIC in Fig. 1a being 
alternatively considered two larger diagonally-separated 
clusters in the same plot).

Dynamically‑identified cancer drivers
We next explored the biological significance of clus-
ters identified by the dynamic clustering approach. Par-
ticularly, we focused on identifying potential cancer 
type-specific somatic driver genes. We used MutSigCV 
to identify potential somatic drivers based on whole 
exome sequence data corresponding to each dynamic 
cluster generated on germline variant sets (COSMIC 
and HFI). COSMIC-based clusters yielded 98 potential 

drivers across cancer types, and HFI-based clusters 109 
drivers. Both lists included a wide range of known driv-
ers from a more comprehensive list by Bailey et  al. that 
relied on multiple computational and experimental tools 
[58]. These include KRAS, TP53, PIK3 CA, BRCA1, 
PTEN, CDH1, RB1, PTEN, FOXA1, SPOP, and VHL (for 
full lists, see Supplementary Tables  1 and 2). COSMIC- 
and HFI-based lists also include 31 and 36 cancer type-
specific novel potential drivers, respectively, which are 
overlooked if analysis is performed on continent-based 
clusters (Fig. 4a). Among these genes are known drivers 
listed in [58], including APC, CBFB, B2M, CDKN2 A, and 
RPL5.

We then investigated the functional importance 
of COSMIC- and HFI-based driver gene lists. Given 
their significant coverage of known drivers, enrich-
ment analysis of both full lists point to known onco-
genic pathways, including the majority of signaling 
pathways listed in Sanchez-Vega et  al. [59]. These 

Fig. 3 Algorithmic and human‑aided identification of dynamic clusters. K‑means results with predefined‑k = 4 fails to identify COSMIC‑based 
clusters in (a) BRCA, (b) COAD, (c) OV, and (d) PAAD among other cancer types. Dynamic‑k results also demonstrate the failure of (e) K‑means, (f) 
HClust, and (g) DBSCAN to identify COSMIC‑based clusters in LIHC, highlighting the need for (h) human‑aid in cluster identification
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pathways include cell cycle alongside Hippo, Notch, 
PI3 K/Akt, TP53, TGFB and WNT signaling. Among 
other important pathways and processes are apopto-
sis, HIF-1, mTOR, TNF, JAK-STAT, VEGF, and FoxO 
signaling (Fig.  4b), and pathways named after several 
cancer types and other diseases and infections (e.g. 
Epstein-Barr and Kaposi sarcoma-associated herpesvi-
rus virus infections). We compared enrichment results 

associated with the dynamically-generated lists with 
and without novel drivers overlooked by the continent-
based scheme. The inclusion of novel genes allows 
dynamic clusters to refer to biological processes, path-
ways, and entities with strong effect on cancer etiology 
(blue and light green borders) such as apoptotic signal-
ing in LUSC, DNA damage response in BRCA, mTOR 
signaling in COAD, and multiple terms pertaining to 

Fig. 4 Known and potential driver genes identified based on dynamic clustering. a Dynamic cluster‑based genes overlooked 
by the continent‑based scheme. Each of the listed genes was identified in at least one COSMIC‑ or HFI‑based dynamic cluster and none 
of the clusters based on predefined continent‑based categories. b Dynamic cluster‑based drivers associate widely with known cancer pathways. 
Genes overlooked by the continent‑based scheme drive a subset of these associations in one (blue border) or both (light green) settings centered 
on the COSMIC‑ and HFI‑based variant sets
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cell adhesion, tissue migration, cell cycle, and cell pro-
liferation across multiple cancer types.

Dynamic clusters are distinguishable by clinical 
and functional cancer signifiers
Dynamic clusters vary by the composition of their under-
lying germline variants. To investigate the biomedical 
significance of the resulting clusterings, we tested for the 
associations between each of the clusters, compared to 
its all its counterparts within a cancer cohort, with clini-
cal variables and gene expression patterns in TCGA. In 
the LUAD-COSMIC setting, the age at the first patho-
logic diagnosis is lower in cluster 1 (C1) than 2 (mean 
= 64.4 and 66.6 years, respectively; Wilcoxon rank-sum 
test, padj < 0.05; Fig. 5a). In LIHC, C1 of the COSMIC set-
ting shows a significant enrichment for high tumor grade 
samples, and C1 of the HFI setting for late tumor stage 
ones (Fig.  5b and 5c, respectively; Wilcoxon rank-sum 

test, padj < 0.05), with similar results that vary among 
clusters in LIHC and LUSC cohorts (Supplementary 
Fig. 8).

We then shifted attention to analyzing differential 
gene expression patterns across cancer types and set-
tings. At the individual gene level, opposite expression 
levels are detected among clusters of the same cohort 
(Fig.  5d). Notably, such patterns correspond to genes 
with reported associations with tumorigenesis, patient 
survival, metastasis, and cell proliferation. These include 
CSN2 [60], NROB1 [61], and NR1H4 [62] in both COS-
MIC and HFI settings in BRCA, and MT1B [63], MUC1 
[64], and KLK11 [65] in LIHC-COSMIC. At the gene 
program level, we used Moonlight [42] to identify pro-
grams that are collectively differentially expressed in each 
cluster compared to matched “normal” samples. Within 
different cohorts, the magnitude and direction of expres-
sion mark significant differences among clusters. These 

Fig. 5 Dynamic clusters across cancer types highlight clinical and functional associations. a Dynamic cluster 1 (C1) based on the COSMIC 
subset in LUAD (LUAD‑COSMIC) shows statistically significant lower age cancer onset than that of the second cluster (C2; padj < 0.05). b C1 
in LIHC‑COSMIC includes samples with higher tumor grade compared to other clusters combined (padj < 0.05). Clusters C5 and C8 include no Grade 
4 samples. c C1 shows more advanced tumor stage samples in LIHC‑HFI compared to C2 (padj < 0.05). d Genes significantly expressed (FDR < 0.05) 
in opposite directions among clusters of BRCA‑COSMIC, BRCA‑HFI and LIHC‑COSMIC highlight potential functional roles associated with different 
clusters. e Gene programs with known association to cancer are collectively expressed in different magnitudes and directions between dynamic 
clusters across cancer types and settings
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include, among others (Fig.  5e; Supplementary Fig.  9), 
a negative expression (Z-score < 0) of cell death in only 
one out of four clusters in BRCA-HFI (C1), of migration 
of cells in only two out of eight in LIHC-COSMIC (C4 
and C7), and of cell survival and migration of cells in one 
of the two clusters in COAD-HFI (C1); a considerably 
higher expression of proliferation of cells in one cluster in 
each of COAD-COSMIC and COAD-HFI (C2 in each); 
and a considerably lower expression of cell survival in 
LIHC-COSMIC (C4), quantity of leukocytes in LUSC-
COSMIC (C2), and necrosis and fatty acid metabolism in 
LIHC-HFI (C1 and C2, respectively).

Dynamic clusters are distinguishable by non‑cancer 
signifiers
In addition to cancer-focused gene programs, we investi-
gated the biological significance of specific genes signifi-
cantly expressed in only one dynamic cluster within each 
setting (|Log2 FC|> 2). Biological enrichment analysis 

of these gene sets revealed essential and non-cancer-
focused biological processes that distinguish different 
clusters. These include, among others (Fig.  6, Supple-
mentary Fig. 10), multiple processes related to neuronal 
response to stimulus in cluster 2 (C2) of COAD-COS-
MIC and neuron development in C1 of LIHC-HFI. Other 
clusters pertain to known associations between path-
ways, non-cancerous diseases, or infections with a spe-
cific tissue or cell type. These include the associations 
between lung squamous cell cancer and each of asthma 
[66] and type 1 diabetes mellitus [67] in C1 of LUSC-
COSMIC and those between READ and the IL-17 path-
way [68] in C2 of READ-HFI. Associations that closely 
pertain to cancer from an essential point of view include 
ones revolving around immune response in C2 of READ-
HFI, as well as signaling and cell differentiation, which 
recurrently emerged from individual clusters within mul-
tiple tissues and cancer types (i.e. label “Across Cancer 
Types” in Fig. 6).

Fig. 6 Genes expressed in single clusters within each cancer type and setting highlight related biological and clinical associations beyond cancer 
(e.g. asthma and lupus in LUSC‑COSMIC‑C1 and neural development in LIHC‑HFI‑C1). Resulting associations share a subset of their underlying 
genes (i.e. edges), and a number of biological processes recurrently emerges across cancer types and settings (i.e. “Across Cancer Types,” top‑right)
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Discussion
We introduced a dynamic approach to clustering human 
genomic variation that does not lock samples within pre-
defined geography-based ancestry categories or average 
genomic patterns across the whole genome regardless 
of the trait under study. This approach also recognizes 
continuums and clusters when they exist at the trait-spe-
cific level (e.g. eight clusters for COSMIC-based LIHC 
vs one continuous cluster for READ in Fig.  1). When 
we apply the dynamic approach to germline data of the 
TCGA cancer cohorts, emerging clusters transcend pre-
defined continent-based categories. When we examine 
the somatic mutational patterns in the resulting dynamic 
germline-based clusterings, we identify tens of known 
and potential cancer driver genes, many of which are 
overlooked by the continent-based scheme. Results based 
on trait-specific clusters also capture the fundamental 
biology associated with the hallmarks of cancer and asso-
ciate clusters with clinical and biological signifiers [69].

The dynamic approach has broader implications for 
how human genomic variation is observed and classi-
fied. The use of racial classification systems in science has 
long been contested given their history that is rife with 
confusion, technological limitations, and enforcement in 
service of colonialism. Race, itself, is an idea rather than a 
discovery; an idea invented to impose systems of control 
and discrimination that continue to shape today’s social 
realities [70]. Enforced color lines disrupted continu-
ous clines of variation and often shifted to serve political 
goals rather than to describe patterns of variation. Fur-
ther, race categories are usually collected to comply with 
civil rights reporting guidelines or for social and admin-
istrative purposes, but the racial categorization systems 
were not designed for genetic studies [2, 14]. Similarly, 
ethnicity categories can be centered on culture, social 
norms, religious beliefs, or language rather than genetic 
ancestry, and their use in genetic studies can lead to inac-
curately reported results. Ethnicity categories are mal-
leable concepts that can change in different times or 
circumstances irrespective of hereditary lines [14, 18].

A sharp decreasing trend in using race categories in 
genomic studies has been reported [71]. While genetic 
ancestry categories resemble, in their biological aspect, 
a direct reflection of a partial inheritance of genetic 
material across generational lines, they can also suffer 
from limitations in semantics, in space, and in time. 
Ancestry categories can be based on geographic, geo-
political, social, or cultural elements, and the process 
of imposing clear lines among predefined populations 
is rife with social and technical limitations. These limi-
tations are heightened when categories are quite broad 
(e.g. continent-based), when individuals identify with 
more than one category, and when the labels might 

further open the door for enforced stigmatic associa-
tions of disease on entire communities [25]. As a result, 
it is generally advisable to cluster genomics cohorts 
only when justified by the research question rather than 
by default [10, 19], and to place social implications of 
the research at the heart of the design process rather 
than as an afterthought [72].

Given the compound nature of human genomic varia-
tion, a broader sampling of human genomic diversity—
with the careful selection of categories during the data 
collection phase, if and as needed or obligated—remains 
highly central to more clearly understand the patterns 
of genomic variation (see Chapter  5 of [10] and [73]). 
In fact, it is through this type of diverse data collection 
efforts that continuous patterns of variation have been 
elucidated on a wider scale [17, 20]. Relatedly, alleles 
that increase the susceptibility to a disease can be pre-
sent across multiple geographies. The notion of dynamic 
clustering can be carried over to genome-wide analyses 
as well. For example, in the case of methods that study 
one variant at a time—such as QTL identification and 
GWAS—it is possible to limit the SNP-based cluster-
ing to some neighborhood of each variant to consider 
how the local genetic relatedness of individuals can be 
accounted for in enrichment analysis.

While certain genomic patterns might be identified in 
a given dataset based on a given predefined model, this 
type of models is not necessarily the only route towards 
this type of identification. Equally importantly, as we 
demonstrate, other patterns can be missed when rely-
ing on broad categories or when considering complex 
traits with loci distributed across the genome. Broad 
stratification, whether driven by discriminatory legacies 
embedded in genetic practice or normalized experimen-
tal design and data collection, might obfuscate genomic 
patterns that transcend predefined categorical bounda-
ries. Diverse datasets and new and existing quantitative 
approaches that can transcend predefined categories—
by utilizing or being able to incorporate trait-specific 
regions, clines, estimated relatedness matrices (e.g. [74, 
75]), principal components (e.g. [76–79]), or other cho-
sen means—are hence crucial to approach different types 
of genomic studies (e.g. ones for gene discovery or other 
types of genomic studies described in [10]), to detect 
various patterns of genomic variation, to address theo-
retical and applied challenges (e.g. gene-environment 
interactions, pleiotropy, false positive control, sample 
size and statistical power considerations), and to lever-
age data generated using different technologies (e.g. deep 
sequencing and GWAS). These efforts have the potential 
to draw a more complete portrait of the genomic bases of 
traits all the while navigating the entangled relationships 
between science and society [11, 80–82].
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Conclusions
Coupled with recent wide genomic data availability, 
existing, complex, and ever-changing human genomic 
variation engenders the need for multiple perspectives 
to studying genomic traits. We introduced a dynamic 
clustering approach that focuses on trait-based genetic 
similarity through a lens that centers both the technical 
and the social aspects of studying human genomic vari-
ation. We applied this approach to genomics cohorts 
corresponding to ten cancer types. Results demon-
strated a varying number of germline clusters among 
cancer types, each of which transcending predefined, 
continent-based categories. Further analysis of these 
clusters captured known fundamental biology under-
lying cancer and identified potential cancer-related 
biomarkers that would be overlooked by a lens that is 
based on continent-based classification schemes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12920‑ 025‑ 02154‑z.

Supplementary Material 1.

Supplementary Material 2.

Supplementary Material 3.

Supplementary Material 4.

Supplementary Material 5.

Supplementary Material 6.

Supplementary Material 7.

Supplementary Material 8.

Supplementary Material 9.

Supplementary Material 10.

Supplementary Material 11.

Acknowledgements
No acknowledgements to include in this section.

Authors’ contributions
Conceptual basis: HM. Methods and experimental design: HM, KB and LP. 
Experiment execution and data analysis: HM. Discussions: HM, KB, PE, QM, 
JCZ, and LP. First manuscript draft: HM and LP. Final manuscript: HM and LP 
with input from KB, PE, QM, and JCZ. All authors read and approved the final 
manuscript.

Funding
This study was supported by a Breast Cancer Research Foundation Investiga‑
tor Award (BCRF‑22–133) and a Susan Komen Leadership Grant (SAC220225) 
to LP.

Data availability
The results published here are in whole or part based upon data generated by 
the TCGA Research Network: https:// www. cancer. gov/ tcga. Controlled‑access 
germline variants of TCGA cohorts were downloaded from the Genomic Data 
Commons (GDC, https:// gdc. cancer. gov/ about‑ data/ publi catio ns/ PanCa nAt‑
las‑ Germl ine‑ AWG) of the National Cancer Institute (NCI) per Huang et al. [30]. 
TCGA variant and meta‑data are available through the GDC portal at https:// 
portal. gdc. cancer. gov/. Ancestry categories were obtained from TCGAA [34] 
available at http:// fcgpo rtal. org/ TCGAA/. We chose to not analyze samples 

labeled “Native American [NA]” out of respect for Indigenous sovereignty. 
Clinical TCGA data was obtained from [83]. Gene expression data corrected for 
batch effect and study‑specific bias were downloaded from RNAseqDB [84] 
at https:// github. com/ mskcc/ RNAse qDB. Genes with germline associations at 
the tissue‑specific level were downloaded from the COSMIC v90 [85] census 
list’s ‘Germline’ column. Full gene lists (n = 2 to 11) are available in Supplemen‑
tary Table 3.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 10 January 2025   Accepted: 6 May 2025

References
 1. Roberts DE. Fatal invention: How Science, Politics, and Big Business Re‑

create Race in the Twenty‑first Century. New York: New Press; 2011.
 2. Jablonski NG. Skin color and race. Am J Phys Anthropol. 

2021;175(2):437–47.
 3. Marks J. Long shadow of Linnaeus’s human taxonomy. Nature. 

2007;447(7140):28–28.
 4. Anemone RL. Race and Human Diversity: A Biocultural Approach. Oxford 

and New York: Routledge; 2019.
 5. Sax, B., When Adam and Eve Were Monkeys: Anthropomorphism, 

zoomorphism, and other ways of looking at animals, in The Routledge 
companion to animal‑human history, H. Kean and P. Howell, Editors. 2018, 
Routledge/Taylor & Francis Group,: London ; New York.

 6. HoSang, D.M., On Racial Speculation and Racial Science: A Response to 
Shiao et al. Sociological Theory, 2014. 32(3).

 7. HL Gates AS Curran W Black Why?: A Hidden Chapter from the Eight‑
eenth‑century Invention of Race. 2022 Cambridge The Belknap Press of 
Harvard University Press Massachusetts

 8. Curran AS. The Anatomy of Blackness: Science & Slavery in an Age of 
Enlightenment. Baltimore: Johns Hopkins University Press; 2011.

 9. Hogarth RA. Medicalizing Blackness: Making Racial Difference in the 
Atlantic World, 1780–1840. Chapel Hill: The University of North Carolina 
Press; 2017.

 10. National Academies of Sciences, Engineering, Medicine, Using Population 
Descriptors in Genetics and Genomics Research: A New Framework for 
an Evolving Field. Washington. DC: The National Academies Press; 2023.

 11. Reardon J. The Human Genome Diversity Project: A case study in Copro‑
duction. Soc Stud Sci. 2001;31(3):357–88.

 12. Jasanoff, S., The Idiom of Co‑Production, in States of Knowledge: The 
Co‑Production of Science and the Social Order, S. Jasanoff, Editor. 2004, 
Routledge. p. 1–12.

 13. Yudell M. Race Unmasked: Biology and Race in the Twentieth Century. 
New York: Columbia University Press; 2014.

 14. Race, Ethnicity, and Genetics Working Group, The use of racial, ethnic, and 
ancestral categories in human genetics research. Am J Hum Genet, 2005. 
77(4): p. 519–32.

 15. Crawford, N.G., et al., Loci associated with skin pigmentation identified in 
African populations. Science, 2017. 358(6365): p. eaan8433.

 16. Jacobs LC, et al. Comprehensive candidate gene study highlights UGT1A 
and BNC2 as new genes determining continuous skin color variation in 
Europeans. Hum Genet. 2013;132(2):147–58.

 17. Wojcik GL, et al. Genetic analyses of diverse populations improves discov‑
ery for complex traits. Nature. 2019;570(7762):514–8.

https://doi.org/10.1186/s12920-025-02154-z
https://doi.org/10.1186/s12920-025-02154-z
https://www.cancer.gov/tcga
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Germline-AWG
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Germline-AWG
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://fcgportal.org/TCGAA/
https://github.com/mskcc/RNAseqDB


Page 14 of 15Mohsen et al. BMC Medical Genomics           (2025) 18:87 

 18. Baker, J.L., C.N. Rotimi, and D. Shriner, Human ancestry correlates with 
language and reveals that race is not an objective genomic classifier. 
Scientific Reports, 2017. 7(1).

 19. Sohail, M., A. Izarraras‑Gomez, and D. Ortega‑Del Vecchyo, Populations, 
Traits, and Their Spatial Structure in Humans. Genome Biology and Evolu‑
tion, 2021. 13(12).

 20. Lewis ACF, et al. Getting genetic ancestry right for science and society. 
Science. 2022;376(6590):250–2.

 21. Serre D, Pääbo S. Evidence for gradients of human genetic diversity 
within and among continents. Genome Res. 2004;14(9):1679–85.

 22. Shriner, D., et al., Genome‑wide genotype and sequence‑based 
reconstruction of the 140,000 year history of modern human ancestry. 
Scientific Reports, 2014. 4(1).

 23. Livingstone, F.B. and T. Dobzhansky, On the Non‑Existence of Human 
Races. Current Anthropology, 1962. 3(3).

 24. Cotter, D.J., et al., A rarefaction approach for measuring population differ‑
ences in rare and common variation. Genetics, 2023. 224(2).

 25. Kader, F.Đ., Lan N.; Lee, Matthew; Chin, Matthew K.; Kwon, Simona C.; 
Yi, Stella S., Disaggregating Race/Ethnicity Data Categories: Criticisms, 
Dangers, And Opposing Viewpoints. Health Affairs Forefront, 2022.

 26. Alelyani, S.T., Jiliang; Liu, Huan, Feature Selection for Clustering: A Review, 
in Data Clustering: Algorithms and Applications, C.C.R. Aggarwal, Chan‑
dan K., Editor. 2014, Chapman and Hall/CRC: New York, NY.

 27. Ultsch, A. and J. Lötsch, The Fundamental Clustering and Projection Suite 
(FCPS): A Dataset Collection to Test the Performance of Clustering and 
Data Projection Algorithms. Data, 2020. 5(1).

 28. ICGC‑TCCA Pan‑Cancer Analysis of Whole Genomes Consortium. Pan‑
cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.

 29. Qing, T., et al., Germline variant burden in cancer genes correlates with 
age at diagnosis and somatic mutation burden. Nature Communications, 
2020. 11(1).

 30. Huang, K.L., et al., Pathogenic Germline Variants in 10,389 Adult Cancers. 
Cell, 2018. 173(2): p. 355–370 e14.

 31. Carter H, et al. Interaction Landscape of Inherited Polymorphisms with 
Somatic Events in Cancer. Cancer Discov. 2017;7(4):410–23.

 32. Ellrott, K., et al., Scalable Open Science Approach for Mutation Calling of 
Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst, 2018. 6(3): p. 
271–281 e7.

 33. Bailey MH, et al. Retrospective evaluation of whole exome and genome 
mutation calls in 746 cancer samples. Nat Commun. 2020;11(1):4748.

 34. Yuan, J., et al., Integrated Analysis of Genetic Ancestry and Genomic 
Alterations across Cancers. Cancer Cell, 2018. 34(4): p. 549–560 e9.

 35. Landrum MJ, et al. ClinVar: public archive of interpretations of clinically 
relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.

 36. Kim S, et al. Meta‑analytic support vector machine for integrating multi‑
ple omics data. BioData Min. 2017;10:2.

 37. Sim, N.L., et al., SIFT web server: predicting effects of amino acid sub‑
stitutions on proteins. Nucleic Acids Res, 2012. 40(Web Server issue): p. 
W452–7.

 38. Reva B, Antipin Y, Sander C. Predicting the functional impact of 
protein mutations: application to cancer genomics. Nucleic Acids Res. 
2011;39(17):e118–e118.

 39. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic 
variants from high‑throughput sequencing data. Nucleic Acids Res. 
2010;38(16):e164–e164.

 40. Liu, X., et al., dbNSFP v3.0: A One‑Stop Database of Functional Predic‑
tions and Annotations for Human Nonsynonymous and Splice‑Site SNVs. 
Human Mutation, 2016. 37(3): p. 235–241.

 41. Lawrence MS, et al. Mutational heterogeneity in cancer and the search 
for new cancer‑associated genes. Nature. 2013;499(7457):214–8.

 42. Colaprico A, et al. Interpreting pathways to discover cancer driver genes 
with Moonlight. Nat Commun. 2020;11(1):69.

 43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. Bioin‑
formatics. 2010;26(1):139–40.

 44. Raudvere U, et al. g:Profiler: a web server for functional enrichment 
analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 
2019;47(W1):W191–8.

 45. H Wickman ggplot2: Elegant Graphics for Data Analysis. 2016 New York 
Springer‑Verlag NY

 46. Reimand J, et al. Pathway enrichment analysis and visualization of omics 
data using g:Profiler, GSEA. Cytoscape and EnrichmentMap Nature Proto‑
cols. 2019;14(2):482–517.

 47. Shannon P, et al. Cytoscape: a software environment for inte‑
grated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

 48. Purcell S, et al. PLINK: a tool set for whole‑genome association and 
population‑based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

 49. Hahsler, M.P., Matthew; Arya, Sunil; Mount, David, dbscan: Density‑Based 
Spatial Clustering of Applications with Noise (DBSCAN) and Related 
Algorithms. 2022.

 50. NCI SEER. Cancer Stat Facts: Cancer of Any Site. 2022; Available from: 
https:// seer. cancer. gov/ statf acts/ html/ all. html.

 51. The 1000 Genomes Project Consortium, A global reference for human 
genetic variation. Nature, 2015. 526(7571): p. 68–74.

 52. Cavalli‑Sforza, L.L., et al., Call for a worldwide survey of human genetic 
diversity: a vanishing opportunity for the Human Genome Project. 
Genomics, 1991. 11(2).

 53. International HapMap Consortium. The International HapMap Project. 
Nature. 2003;426(6968):789–96.

 54. Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev 
Pathol. 2015;10:25–50.

 55. Bailey CE, et al. Increasing disparities in the age‑related incidences of 
colon and rectal cancers in the United States, 1975–2010. JAMA Surg. 
2015;150(1):17–22.

 56. Myer PA, et al. The Genomics of Colorectal Cancer in Populations with 
African and European Ancestry. Cancer Discov. 2022;12(5):1282–93.

 57. Xu D, Tian Y. A Comprehensive Survey of Clustering Algorithms. Annals of 
Data Science. 2015;2(2):165–93.

 58. Bailey MH, et al. Comprehensive Characterization of Cancer Driver Genes 
and Mutations. Cell. 2018;173(2):371‑385.e18.

 59. Sanchez‑Vega F, et al. Oncogenic Signaling Pathways in The Cancer 
Genome Atlas. Cell. 2018;173(2):321‑337.e10.

 60. Bach K, et al. Time‑resolved single‑cell analysis of Brca1 associated mam‑
mary tumourigenesis reveals aberrant differentiation of luminal progeni‑
tors. Nat Commun. 2021;12(1):1502.

 61. Zhang H, et al. The prognostic value of the orphan nuclear recep‑
tor DAX‑1 (NROB1) in node‑negative breast cancer. Anticancer Res. 
2011;31(2):443–9.

 62. Journe F, et al. Association between farnesoid X receptor expres‑
sion and cell proliferation in estrogen receptor‑positive luminal‑like 
breast cancer from postmenopausal patients. Breast Cancer Res Treat. 
2009;115(3):523–35.

 63. Xu P, et al. Copy number variation of metallothionein 1 (MT1) associates 
with MT1X isoform expression and the overall survival of hepatocellular 
carcinoma patients in Guangxi. Gene Reports. 2024;34: 101889.

 64. Yuan SF, et al. Expression of MUC1 and its significance in hepa‑
tocellular and cholangiocarcinoma tissue. World J Gastroenterol. 
2005;11(30):4661–6.

 65. Ke H, et al. Serum protein biomarkers for HCC risk prediction in HIV/HBV 
co‑infected people: a clinical proteomic study using mass spectrometry. 
Front Immunol. 2023;14:1282469.

 66. Rosenberger A, et al. Asthma and lung cancer risk: a systematic investiga‑
tion by the International Lung Cancer Consortium. Carcinogenesis. 
2011;33(3):587–97.

 67. Yu, X., et al., Causal relationship between diabetes mellitus and lung 
cancer: a two‑sample Mendelian randomization and mediation analysis. 
Frontiers in Genetics, 2024. 15.

 68. Razi S, et al. IL‑17 and colorectal cancer: From carcinogenesis to treat‑
ment. Cytokine. 2019;116:7–12.

 69. Hanahan D, Robert A. Weinberg, Hallmarks of Cancer: The Next Genera‑
tion. Cell. 2011;144(5):646–74.

 70. McLean S‑A. Isolation by Distance and the Problem of the Twenty‑First 
Century. Hum Biol. 2019;91(2):81–94.

 71. Byeon YJJ, et al. Evolving use of ancestry, ethnicity, and race in genetics 
research—A survey spanning seven decades. The American Journal of 
Human Genetics. 2021;108(12):2215–23.

 72. Reardon, J., Human Population Genomics and the Dilemma of Difference, 
in Reframing Rights: Bioconstitutionalism in the Genetic Age, S. Jasanoff, 
Editor. 2011, MIT Press: Cambridge, Massachusetts; London, Englad. p. 
217–238.

https://seer.cancer.gov/statfacts/html/all.html


Page 15 of 15Mohsen et al. BMC Medical Genomics           (2025) 18:87  

 73. Oni‑Orisan A, et al. Embracing Genetic Diversity to Improve Black Health. 
N Engl J Med. 2021;384(12):1163–7.

 74. Kang HM, et al. Variance component model to account for sample struc‑
ture in genome‑wide association studies. Nat Genet. 2010;42(4):348–54.

 75. Zhou X, Stephens M. Genome‑wide efficient mixed‑model analysis for 
association studies. Nat Genet. 2012;44(7):821–4.

 76. Jiang L, et al. A resource‑efficient tool for mixed model association analy‑
sis of large‑scale data. Nat Genet. 2019;51(12):1749–55.

 77. Mbatchou J, et al. Computationally efficient whole‑genome regression 
for quantitative and binary traits. Nat Genet. 2021;53(7):1097–103.

 78. Zhao, H., et al., A practical approach to adjusting for population stratifica‑
tion in genome‑wide association studies: principal components and pro‑
pensity scores (PCAPS). Statistical Applications in Genetics and Molecular 
Biology, 2018. 17(6).

 79. Zhou W, et al. Efficiently controlling for case‑control imbalance and 
sample relatedness in large‑scale genetic association studies. Nat Genet. 
2018;50(9):1335–41.

 80. Yudell M, et al. Taking race out of human genetics. Science. 
2016;351(6273):564–5.

 81. Thorp, H.H., Time to look in the mirror, in Science. 2020.
 82. Nobles, M.W., Chad; Wonkam, Ambroise; Wathuti, Elizabeth, Science must 

overcome its racist legacy: Nature’s guest editors speak, in Nature. 2022.
 83. Liu J, et al. An Integrated TCGA Pan‑Cancer Clinical Data Resource to 

Drive High‑Quality Survival Outcome Analytics. Cell. 2018;173(2):400‑416.
e11.

 84. Wang Q, et al. Unifying cancer and normal RNA sequencing data from 
different sources. Scientific Data. 2018;5(1): 180061.

 85. Tate JG, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. 
Nucleic Acids Res. 2019;47(D1):D941–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Dynamic clustering of genomics cohorts beyond race, ethnicity—and ancestry
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Historical perspective
	Further limitations
	Dynamic, trait-specific germline clustering

	Methods
	Genomic datasets
	SNP selection
	Driver gene identification
	Clinical variable analysis
	Gene expression analysis
	Enrichment analysis
	MDS plotting and algorithmic clustering

	Results
	Overview
	Beyond continent-based categories
	High-functional-impact compact clusters
	Human aid improves algorithmic clustering
	Dynamically-identified cancer drivers
	Dynamic clusters are distinguishable by clinical and functional cancer signifiers
	Dynamic clusters are distinguishable by non-cancer signifiers

	Discussion
	Conclusions
	Acknowledgements
	References


