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Abstract
Background  Coronary Artery Disease (CAD) is the most common cardiovascular disease worldwide, threatening 
human health, quality of life and longevity. Aging is a dominant risk factor for CAD. This study aims to investigate the 
potential mechanisms of aging-related genes and CAD, and to make molecular drug predictions that will contribute 
to the diagnosis and treatment.

Methods  We downloaded the gene expression profile of circulating leukocytes in CAD patients (GSE12288) from 
Gene Expression Omnibus database, obtained differentially expressed aging genes through “limma” package and 
GenaCards database, and tested their biological functions. Further screening of aging related characteristic genes 
(ARCGs) using least absolute shrinkage and selection operator and random forest, generating nomogram charts and 
ROC curves for evaluating diagnostic efficacy. Immune cells were estimated by ssGSEA, and then combine ARCGs 
with immune cells and clinical indicators based on Pearson correlation analysis. Unsupervised cluster analysis was 
used to construct molecular clusters based on ARCGs and to assess functional characteristics between clusters. The 
DSigDB database was employed to explore the potential targeted drugs of ARCGs, and the molecular docking was 
carried out through Autodock Vina. Finally, single-cell data (GSE159677) of arterial intima was used to further explore 
the expression of aging signature genes in different cell subpopulations.

Results  We identified 8 ARCGs associated with CAD, in which HIF1A and FGFR3 were up while NOX4, TCF7L2, HK3, 
CDK18, TFAP4, and ITPK1 were down in CAD patients. Based on this, CAD patients can be divided into two molecular 
clusters, among which cluster A mainly involves functional pathways such as ECM receptor interaction and focal 
adhesion; cluster B mainly involves functional pathways such as amimo sugar and nucleotide sugar metabolism and 
pyrimidine metabolism. In addition, the molecular docking results showed that retinoic acid and resveratrol had good 
binding affinity with targets genes. Further single-cell analysis results showed that NOX4, TCF7L2, ITPK1, and HIF1A 
were specifically expressed in different types of cells in atherosclerotic tissues.
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Introduction
Coronary artery disease (CAD) is a cardiovascular dis-
ease caused by coronary atherosclerosis, which is char-
acterized by stable angina, unstable angina, myocardial 
infarction, and sudden cardiac death [1]. In 2022, there 
were 315  million prevalent cases of CAD globally and 
the aged-standardized prevalence was 3.6% [2]. There 
are many risk factors for CAD, such as genetics, envi-
ronmental factors, and lifestyle, which have a certain 
impact on the occurrence and development of the dis-
ease [3]. Although pharmacological treatment and vascu-
lar reconstruction therapy have to some extent reduced 
the mortality rate and improved the quality of life of 
CAD patients, it remains the main disease that endan-
gers human life and health [4, 5]. Therefore, exploring the 
influencing factors and pathogenesis is important for the 
prevention and treatment of CAD.

Aging is the core manifestation of various diseases (e.g., 
cardiovascular diseases, neurodegenerative diseases, 
etc.) and affects many cells, tissues, and organs in the 
body [6]. Aging of cardiovascular system is a key factor 
in the occurrence and development of CAD [7], involv-
ing changes in epigenetics, intercellular communication, 
chronic inflammation, and ecological imbalance [8]. Pre-
vious studies have shown that the expression and modi-
fication of key aging genes such as APOE, FOXO1, and 
IGF-1 are closely related to multiple stages of CAD [9, 
10]. In addition, oxidative stress and circulating inflam-
mation will lead to accelerated aging of cardiomyocytes 
and even extensive DNA damage [11]. However, there 
have been limited studies examining the relationship 
between aging-related genes and immune infiltrations in 
CAD thus far.

With the rapid development of microarray and high-
throughput sequencing technologies, more and more 
CAD related genetic data are being uploaded into Gene 
Expression Omnibus (GEO) databases, providing oppor-
tunities for further bioinformatics data mining as well 
as for recognizing CAD-related genetic changes. How-
ever, one of the key challenges in data processing is deal-
ing with the feature dimensionality and redundancy of 
the data [12]. To address this issue, machine learning 
is increasingly being used to identify feature selection 
classifiers and to build robust diagnostic or prognos-
tic prediction models for different diseases [13]. For 
example, Wang et al. identified immune cell infiltration 
and diagnostic biomarkers in unstable atherosclerotic 
plaques through machine learning [14]. Based on this, 

the cross-combination of machine learning may help in 
bioinformatics data mining and analysis of CAD related 
aging genes.

The search for pathways that can intervene in the aging 
process and extend healthy lifespans is a key aspect of 
aging research. Although some molecule drugs have 
shown objective effects of delaying aging in model ani-
mals, their targets are still unclear [6, 15, 16]. Molecu-
lar docking is often used to elucidate the interactions 
between molecules in depth and has important applica-
tions in drug development [17]. In this study, we screened 
CAD associated aging related characteristic genes 
(ARCGs) by machine learning and constructed different 
aging clusters of CAD. Moreover, we explored molecular 
drugs related to ARCGs and verified their feasibility by 
molecular docking, in order to provide new insights into 
the pathogenesis and effective treatment of CAD.

Materials and methods
Data download and preprocessing
The raw gene expression profiles of CAD patients come 
from GSE12288 [18] and GSE159677 [19] datasets of 
the GEO (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​/​g​d​s​/). The 
GSE12288 dataset includes of circulating leukocyte 
specimens from 110 CAD patients (CAD index > 23) and 
112 non-CAD controls (CAD index = 0), evaluated for 
gene expression using the Affymetrix U133A chips. The 
GSE159677 dataset contains single cell RNA sequencing 
(scRNA‑seq) of arterial intima in 3 patients with athero-
sclerosis, which were sequenced by Illumina NextSeq 
500. A total of 497 aging related genes were obtained 
from GeneCards (https://www.genecards.org/) and 
Human Aging Genomic Resources (​h​t​t​p​​s​:​/​​/​g​e​n​​o​m​​i​c​s​​.​s​
e​​n​e​s​c​​e​n​​c​e​.​i​n​f​o​/). There were 338 aging genes from ​G​e​n​
e​C​a​r​d​s​, and the criteria were aging-related protein-cod-
ing genes with a score ≥ 10. The Human Aging Genomic 
Resources are mainly 307 Human Ageing-Associated 
genes.

Differential aging genes and functional analysis
In R (4.3.0), we screened differentially expressed genes 
in CAD and healthy control (HC) populations using 
“limma” package with P < 0.05 as the standard. Subse-
quently, we intersected them with aging related genes by 
Venn plots, resulting in aging related differential genes 
(ARDGs), which were displayed by heatmap. Based on 
the " clusterProfiler " package [20], the potential biologi-
cal and functional attributes of ARDGs were investigated 

Conclusion  Our study identified several ARCGs that may be involved in the pathogenesis and progression of CAD. 
Further, retinoic acid and resveratrol were potential candidate molecule drugs for inhibiting these targets.
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through Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses.

Machine learning for discovery of ARCGs
To further screen characteristic genes, two machine 
learning algorithms, least absolute shrinkage and selec-
tion operator (LASSO) and random forest (RF), were 
applied. LASSO, a dimension reduction approach, was 
found to be superior to regression analysis for evalu-
ating high-dimensional data. The LASSO analysis 
involved implementing a 10-fold cross-verification via 
the “glmnet” package [21], using to determine the opti-
mal lambda value. Partial likelihood bias was mini-
mized to prevent overfitting of the regression model. On 
the other hand, RF elimination in RF algorithms was a 
supervised machine learning method used to sort CAD 
related ARCGs, with relative importance > 0.3 identified 
as feature genes. Finally, in order to validate the clinical 
application and usability of risk characteristics based on 
ARCGs, nomogram charts and receiver operating char-
acteristic (ROC) curves were utilized.

Correlation analysis of ARCGs with immune cells and 
clinical features
The abundance and difference results of 22 immune cells 
between the CAD and HC groups were assessed based 
on the inverse convolution algorithm using the source 
code and benchmark database files officially provided by 
CIBERSORT [22]. In addition, Pearson correlation analy-
sis was also used to determine the correlation between 
ARCGs, immune cells, and clinical features, which was 
visualized through correlation heatmaps. P < 0.05 is con-
sidered statistically significant.

Constructing aging clusters of CAD based on ARCGs
The ARCGs expression matrices of 110 CAD patients 
were extracted and grouped by an unsupervised cluster 
analysis algorithm to accurately identify CAD patients 
with common genetic characteristics. Among them, 
ConsensusClusterPlus is an unsupervised classification 
method extended with R language, including item track-
ing, item consensus, and generation of clustered consen-
sus maps [23]. Briefly, the covariance coefficients and the 
shear values of the best clusters were obtained by passing 
the homologous gene matrices to the consensus cluster-
ing algorithm (input parameters k = 2–10). After obtain-
ing the optimal shear values and clusters, the expression 
of ARCGs in clusters was displayed in the form of heat-
map. Principal component analysis (PCA) was used to 
show the difference and distinction between different 
aging clusters of CAD.

Functional analysis of aging clusters of CAD
To explore the functional differences between aging clus-
ters of CAD, we introduced differential genes (|log2FC| > 
0.5, P < 0.05) from the clusters into Metascape ​(​​​h​t​t​p​s​:​/​/​m​
e​t​a​s​c​a​p​e​.​o​r​g​/​​​​​) for biological function enrichment analy-
sis [24]. Subsequently, the pathways with higher enrich-
ment were clustered and networks were constructed 
based on functional relevance. Moreover, the “cluster-
Profiler” package was utilized for Gene Set Enrichment 
Analysis (GSEA) to identify the potential mechanisms of 
c2 (c2.cp.kegg.v7.5.1.entrez.gmt) in molecular signature 
database.

Screening and molecular Docking of molecule drugs
The Drug Characteristic Database (DSigDB, ​h​t​t​p​​:​/​/​​d​s​i​g​​d​
b​​.​t​a​​n​l​a​​b​.​o​r​​g​/​​D​S​i​g​D​B​v​1​.​0​/) is a new gene set resource that 
associates drugs/compounds and their target genes [25]. 
We imported CAD related ARCGs into DSigDB to obtain 
potential target drugs. The 3D structure of the ARCGs 
target protein was downloaded from the RCSB Protein 
Data Bank (RCSB PDB, http://www.pdb.org/). The ​m​o​d​
i​f​i​e​d versions of the protein, as well as the ligand, were 
separated and the water was removed using the Pymol 
software. Additionally, the 3D structure of the drugs 
component was obtained from PubChem, and hydrogen 
was added and charges were calculated. Subsequently, 
Autodock Vina 1.2.2 software was utilized to perform 
docking simulations with the core target protein, while 
limiting the binding energy to be ≤ − 5.0  kcal·mol− 1 in 
order to identify stable binding sites.

ScRNA‑seq to explore expression of ARCGs
ScRNA‑seq to explore expression of ARCGs raw data 
from 3 CAD patients were read through the “Seurat” 
package [26]. Cells with < 500 or > 5000 genes were 
excluded as non-cellular or cellular aggregates. In addi-
tion, cells with a certain percentage of mitochondrial or 
ribosomal genes > 10% or 5%, respectively, were also fil-
tered out. Then, single cell data were integrated through 
“Harmony” package and the top 2000 highly expressed 
cells were included in subsequent analysis. PCA was 
used to divide clusters by linear relationships and cluster 
trees were used to visualize relationships between clus-
ters at multiple resolutions. Integrate and annotate differ-
ent clusters obtained from PCA using “SingleR” package 
[27]. Further dimensionality reduction and display were 
achieved through t-distribution random neighborhood 
embedding (t-SNE) and unified manifold approximation 
and projection (UMAP) algorithms. Finally, the expres-
sion of ARCGs was shown in cellular clusters.

https://metascape.org/
https://metascape.org/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://www.pdb.org/
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Results
Identification and functional analysis of CAD related 
ARDGs
The GSE12288 data were normalized and differential 
genes were extracted using the “limma” package. Accord-
ing to the screening criteria of P < 0.05, a total of 924 
differentially expressed genes were obtained. As shown 
in Fig. 1A and 37 ARDGs were obtained after intersect-
ing with 497 aging genes (Table S1). Specific expression 
of each gene of ARDGs in the CAD and HC groups was 
shown as the heatmap (Fig.  1B). Next, the functional 
pathways involved in ARDGs were initially explored by 
GO and KEGG enrichment analyses. In GO terms, cellu-
lar response to stress, cell death, programmed cell death, 
apoptotic process, and phosphorylation were mainly 
enriched (Fig. 1C). In KEGG analyses, PI3K-Akt signaling 
pathway, HIF-1 signaling pathway, Wnt signaling path-
way, and MAPK signaling pathway were mainly enriched 
(Fig. 1D).

Selection of CAD related ARCGs by machine learning
Two machine learning algorithms were applied to select 
characteristic genes associated with CAD and aging 
genes. In LASSO regression algorithm, 29 genes from 
the 37 ARDGs were identified as potential diagnostic 
biomarkers (Fig. 2 A and B). In RF algorithm, the top 10 
genes with relative importance > 0.3 were identified as 
potential diagnostic biomarkers (Fig.  2C and D). Then, 
8 genes (HK3, CDK18, TFAP4, FGFR3, ITPK1, HIF1A, 
TCF7L2, and NOX4) were overlapped via Venn diagram 
(Figure S1A), and served as CAD related ARCGs. In 
addition, chromosomes and positions of the 8 genes were 
displayed in circle diagram (Figure S1B). Columnar line 
graphs were constructed to diagnose CAD by integrating 
ARCGs and the total score was obtained by summing the 
scores of all trait genes (Figure S2A). Moreover, when the 
ARCGs were integrated into one variable, the AUC of the 
ROC curve was 0.761 (Figure S2B). This indicated that 
the ARCGs have good diagnostic efficiency in predicting 
CAD.

Fig. 1  Identification and functional analysis of CAD related ARDGs. (A) Venn diagram obtained CAD related ARDGs from CAD DEGs and aging genes. 
(B) Heatmap displays the expression of ARDGs in CAD c and HC groups. (C) GO enrichment analysis of ARDGs. (D) KEGG enrichment analysis of ARDGs
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Correlation of ARCGs with immune cells and clinical 
features
The CIBERSORT algorithm is used to evaluate the 
immune cells infiltration patterns of CAD and HC 
groups. The results showed that the expression of T cells 
CD4 naïve was significantly reduced in CAD patients, 
while the expression of Macrophages M0 was signifi-
cantly increased (Fig.  3A). Then, through Pearson cor-
relation analysis between ARCGs and immune cells, we 

found that (Fig.  3B) ITPK1 was significantly positively 
correlated with Macrophages M0 and Neutrophils, while 
negatively correlated with T cells CD4 naïve and Macro-
phages M2; NOX4 was significantly positively correlated 
with T cells CD4 memory activated and negatively cor-
related with T cells CD4 naïve; HK3 was significantly 
positively correlated with Monocytes and negatively cor-
related with T cells CD8; HIF1A was significantly posi-
tively correlated with Neutrophils and Macrophages M2, 

Fig. 2  Machine learning screening of characteristic genes associated with CAD and aging genes. (A) Profiles of the LASSO regression coefficients. (B) 
Tuning feature selection in the LASSO model. (C) The error rate confidence intervals for RF model. (D) The relative importance of genes based on cross-
validation error rate curves
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while negatively correlated with T cells CD8 and Tregs. 
On the other hand, the Pearson correlation analysis 
between ARCGs and clinical features showed the expres-
sion of ITPK1 and NOX4 was significantly positively 
correlated with CAD-index, and ITPK1 was also signifi-
cantly positively correlated with age (Fig. 3C).

Constructing CAD aging models based on ARCGs
Based on the expression of the 8 ARCGs (HK3, CDK18, 
TFAP4, FGFR3, ITPK1, HIF1A, TCF7L2, and NOX4), we 
clustered the 110 CAD patients into aging clusters A and 
B by consensus cluster analysis (Fig.  4A), and detailed 

ARCGs expression information in 2 aging clusters was 
presented in heatmap (Fig. 4B). In addition, PCA showed 
good discrimination between the aging clusters A and B 
(Fig. 4C).

Differences in functional features between two models
Using|log2FC| > 0.5 and P < 0.05 as the screening cri-
teria, we identified 64 differentially expressed genes 
between the 2 clusters. Through Metascape database, 
we found that these differential gene introductions are 
mainly enriched in anion transport, voltage gated potas-
sium channels cell-cell adhesion, and tissue homeostasis 

Fig. 3  Correlation of ARCGs with Immune Cells and Clinical Features. (A) Differences in 22 immune cells. composition between the CAD and HC groups. 
(B) Correlation map of ARCGs and immune cells. (C) Correlation map of ARCGs and Clinical Features
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(Fig.  4D). In addition, we further evaluated the criti-
cal functional pathways of cluster A or B. The results of 
GSEA revealed that the ECM receptor interaction, focal 
adhesion, and Glycosphingolipid biosynthesis ganglio 
series were upregulated in aging cluster A (Fig.  5A-C), 
while the amimo sugar and nucleotide sugar metabo-
lism, intestinal immune network for IGA production, and 
pyrimidine metabolism were upregulated in aging cluster 
B (Fig. 5D-F).

Screening and molecular Docking validation of molecule 
drugs
To explore the candidate Molecule drugs for CAD, we 
considered 8 ARCGs as drug targets and used DSigDB 
database for drug prediction. We screened the top 20 
drugs by adjusted P-value and combined score, includ-
ing 4-Hydroxytamoxifen, N-Acetyl-L-cysteine, resve-
ratrol, retinoic acid, arsenenous acid, AZD4547 LINCS, 
BIBF-1120 (derivative), erythorbic acid, D-glucose, 
etc. (Table S2). In addition, we selected retinoic acid 

and resveratrol for molecular docking with their tar-
get genes by Autodock Vina. Binding energies of HIF1A 
with resveratrol was − 6.1  kcal/mol (Fig.  6A). Binding 
energies of FGFR3, HIF1A, and HK3 with retinoic acid 
were − 7.0  kcal/mol, − 5.9  kcal/mol, and − 7.4  kcal/mol 
(Fig.  6B-D). In summary, retinoic acid and resveratrol 
have the potential to become therapeutic drugs for CAD 
and may play roles through ARCGs.

Expression of ARCGs in single cells by ScRNA‑seq analysis
Through the “Harmony” package, we successfully inte-
grated three CAD single cells samples and selected the 
first 2000 highly expressed cells for subsequent analysis 
(Figure S3A and B). According to resolution = 1.5 (Fig-
ure S3C), we got 32 clusters and showed them by t-SNE 
and UMAP (Figure S3D and E). Afterwards, the different 
clusters were integrated and annotated based on maker 
genes by “SingleR” package, resulting in 8 cell subpopu-
lations, namely T cells, monocyte, smooth muscle cells, 
macrophage, endothelial cells, tissue stem cells, NK cells 

Fig. 4  Constructing CAD Aging Models Based on ARCGs. (A) Consensus clustering matrix for k = 2. (B) Heatmap displays the expression of ARCGs in 
cluster A and B. (C) PCA displays the differentiation between cluster A and B. (D) Exploring the functional pathways involved in differential denes in cluster 
A and B based on Metascape
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Fig. 6  Molecular docking diagram of molecule drugs and target genes. (A) resveratrol-HIF1A (B) retinoic acid-FGFR3 (C) retinoic acid- HIF1A (D) retinoic 
acid- HK3

 

Fig. 5  Evaluating the specific functional pathways of cluster A and B through GSEA. (A-C) The ECM receptor interaction, focal adhesion, and Glyco-
sphingolipid biosynthesis ganglio series are upregulated in aging cluster A. (D-F) The amimo sugar and nucleotide sugar metabolism, intestinal immune 
network for IGA production, and pyrimidine metabolism are upregulated in aging cluster B
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and B cells (Fig. 7A-B). The percentage of expression of 
ARCGs in each cell subpopulations were as UMAP plots 
(Fig. 7C). Among them, NOX4 was mainly expressed in 
macrophage; TCF7L2 was mainly expressed in smooth 
muscle cells; HIF1A was mainly expressed in all cell sub-
populations; ITPK1 was mainly expressed in T cells and 
monocyte.

Discussion
CAD is a serious worldwide disease and its incidence rate 
and prevalence is closely related to age [28]. Recently, fol-
lowing numerous high-throughput sequencing genetic 
analyzes, some important aging-associated molecules 
have been identified [29]. However, aging-related changes 
in the cardiovascular system are difficult to attribute to a 
single molecular mechanism. Based on the transcriptome 
of CAD, we mined 8 ARCGs out of 37ARDGs by machine 
learning. In addition, we employed various analyses such 
as immune infiltration, GSEA, and unsupervised clus-
ter to comprehensively understand the mechanism of 

aging participating in CAD. Finally, molecular docking 
was used to explore potential therapeutic drugs (retinoic 
acid and resveratrol) in order to provide new insights for 
treatment.

A total of 37ARDGs were employed for functional 
enrichment analysis. Cellular response to stress, cell 
death, apoptotic process, and phosphorylation were 
mainly enriched in GO analysis. PI3K-Akt signaling 
pathway, HIF-1 signaling pathway, and MAPK signal-
ing pathway were mainly enriched in KEGG analysis. 
The aging state is accompanied by inability to respond 
to endogenous and exogenous stimuli, enhanced secre-
tion phenotype, and resistance to cell death [30]. Fur-
thermore, phosphorylation is widely associated with cell 
death, amplifying the effects of cell-intrinsic prolifera-
tive arrest and contributing to impaired tissue regenera-
tion, organ aging, and chronic age-related diseases [8]. 
Similarly, dysfunction of mitochondrial oxidative phos-
phorylation leads to oxidative damage caused by ROS 
production, which is an important molecular basis for the 

Fig. 7  Expression of ARCGs in Single Cells. (A) The t-SNE algorithm integrated and annotated the clusters into 8 cell subpopulations. (B) The UMAP al-
gorithm integrated and annotated the clusters into 8 cell subpopulations. (C) The expression percentage of ARCG in each cell subgroup is shown in the 
UMAP diagram
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pathological and physiological conditions of aging [31]. 
Kim et al. found that the HIF-1 pathway can improve cell 
aging by inhibiting aging marker (AIMP3) and enhanc-
ing autophagy activity [32]. The PI3K-Akt pathway and 
MAPK pathway are common growth factor and mitogen 
dependent signaling pathways. Activation of the PI3K-
Akt pathway has been observed in some animal mod-
els of cardiovascular disease and aging [33]. In addition, 
the PI3K-Akt pathway and MAPK pathway can regulate 
the key complexes mTOR1 and mTOR2 of the mTOR 
pathway [34]. Meanwhile, the mTOR complex regulates 
various downstream processes through phosphorylation, 
including lipid metabolism, protein synthesis, autophagy, 
and cell growth [35].

Early identification and intervention of CAD can effec-
tively delay the progression of disease or avoid the occur-
rence of cardiovascular events. In this study, we further 
identified 8 ARCGs (NOX4, TCF7L2, HIF1A, HK3, 
CDK18, TFAP4, FGFR3, and ITPK1) through machine 
learning, and the joint prediction AUC of the model was 
0.761. Moreover, further correlation analysis showed that 
NOX4 and ITPK1 were associated with CAD-index, and 
ITPK1 was positively correlated with age. NOX4 is an 
important effector of oxidative stress and involved in reg-
ulation of ROS [36]. Lee et al. found that NOX4 mRNA 
and protein expression is elevated in the aging aorta and 
its involvement in aging-related vascular dysfunction 
is associated with ROS accumulation and IRE1α phos-
phorylation [37]. Besides, A prospective cohort study 
involving 15,434 middle-aged and elderly Chinese popu-
lation found that NOX4 gene mutations may be associ-
ated with risk of CAD morbidity and mortality [38]. 
ITPK1 is a protein modified gene closely related to ino-
sitol phosphate metabolism and cell death [39]. Recently, 
researchers have found that membrane binding and lipid 
transport induced by inositol phosphate metabolism are 
important factors in lysosomal driven aging related dis-
eases [40]. In addition, ITPK1 methylation was signifi-
cantly associated to smoking related CAD [41]. TFAP4 
is an important transcription factor involved in DNA 
repair, thereby inhibiting DNA damage, aging, and chro-
mosomal instability [42]. The detection rate of wild-type 
homozygous genotype of TCF7L2 gene in middle-aged 
and elderly CHD patients is significantly higher than that 
in the control group [43]. Furthermore, TCF7L2 gene 
polymorphism is associated with reduced insulin secre-
tion, deterioration of endothelial function, increased 
coronary artery thrombosis burden, and increased short-
term mortality in patients with myocardial infarction 
[44]. Therefore, these ARCGs are important biomarkers 
for CAD and have the potential to serve as therapeutic 
targets.

The CIBERSORT results showed that the expression 
of T cells CD4 naïve was significantly reduced in CAD 

patients, while the expression of Macrophages M0 was 
significantly increased. Inflammatory macrophages and 
foam cell formation are key factors in atherosclerotic 
plaque progression [45]. M0 macrophages are the initia-
tion point of inflammatory response. Under the stimula-
tion of chemokines, immune complexes and lipids, M0 
macrophages can be polarized to pro-inflammatory M1 
subsets or anti-inflammatory M2 subsets [46]. In addi-
tion, our single-cell analysis results showed that NOX4 
was mainly expressed in macrophages. Similarly, Ven-
drov et al. suggested that increased NOX4 during aging 
drives mitochondrial dysfunction and a proinflammatory 
phenotype in macrophages, contributing to atheroscle-
rosis progression [47]. Moreover, Tay et al. reported the 
importance of interactions between CD4 T cells and B 
cells to promote lipid-induced atherosclerosis, and that 
targeting CD4 T cell and B cell interactions may be a 
therapeutic strategy to limit atherosclerosis progression 
[48].

Molecular docking can deeply elucidate the interac-
tions between molecules, explain the mechanisms of 
interactions, and has important applications in drug 
development [49]. In this study, we explored and pre-
liminarily validated the potential of resveratrol and reti-
noic acid as CAD treatment drugs through DSigDB and 
Autodock Vina. Animal study has shown that activating 
SIRT1 through resveratrol treatment can improve age-
related changes in mouse skeletal muscle and heart by 
restoring autophagy [50]. In addition, Guo et al. found 
that resveratrol has a significant anti-inflammatory effect, 
alleviating HIF1A-mediated angiogenesis and prevent-
ing the progression of CAD through the TLR4/NF-κB 
signaling pathway [51]. Moreover, the current use of dif-
ferent carriers (such as nanomaterials) for encapsulation 
and controlled release of resveratrol has to some extent 
overcome its limitations of low water solubility and poor 
chemical stability, thus expanding therapeutic applica-
tions [52]. Retinoic acid is a metabolite of vitamin A in 
the body and plays an important role in myocardial dif-
ferentiation and maturation [53]. Our study identified 
that retinoic acid has good binding with FGFR3, HIF1A, 
and HK3. Bilbija et al. found that retinoic acid signal-
ing is activated in ischemic hearts and can inhibit the 
differentiation of fibroblasts in vitro, playing a role in 
the regulation of damage and repair during remodeling 
[54]. FGFR3 is an independent gene-encoded fibroblast 
growth factor receptor whose overactivation may lead to 
coronary endothelial cell dysfunction and vascular wall 
damage, thereby increasing the occurrence and develop-
ment of CAD [55].

This study is the first to systematically evaluate aging 
genes in CAD, identify characteristic genes and bio-
logical functions, and predict their potential molecular 
drugs. However, there are some limitations that need to 
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be highlighted. Firstly, our current research is on obtain-
ing public databases, despite conducting various bioin-
formatics mining, its specific mechanisms and reliability 
require additional clinical or experimental validation and 
evaluation. In addition, specific aging features such as 
cellular senescence, vascular senescence, and nutrient-
sensing disorders with potential mechanisms of CAD 
need to be further explored.

Conclusion
In summary, we screened CAD related ARCGs through 
machine learning, constructed different CAD aging clus-
ters, and explored related functional pathways. More-
over, we explored molecular drugs related to ARCGs 
and verified their feasibility through molecular docking. 
These results suggest that aging genes play an important 
role in the onset and progression of CAD, and molecular 
drugs that act on their targets have potential therapeutic 
effects.
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