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Abstract
Background  Acute myocardial infarction (AMI) has become a serious disease that endangers human health, with 
high morbidity and mortality. Numerous studies have reported histone acetylation can result in the occurrence of 
cardiovascular diseases. This article aims to explore the potential biomarkers of histone acetylation regulatory genes 
(ARGs) in AMI patients.

Methods  Five AMI datasets were downloaded from the Gene Expression Omnibus (GEO) database. Next, ARG-
related genes were gathered by gene set variation analysis (GSVA) and Spearman’s correlation analysis. Subsequently, 
weighted gene co-expression network analysis (WGCNA) was performed to identify the module genes related to 
histone acetylation regulation. In the GSE60993 and GSE48060 datasets, the common differentially expressed genes 
(DEGs) between AMI and control samples were screened. Importantly, the intersecting genes were obtained by 
overlapping ARGs-related genes, common DEGs, and module genes. Then, the biomarkers in AMI were determined 
by machine learning, receiver operating characteristic (ROC) curves, and quantitative PCR (qPCR). In addition, immune 
analysis, drug prediction, molecular docking, and the lncRNA-miRNA-mRNA regulatory network targeting the 
biomarkers were analyzed, respectively.

Results  Here, a total of 18 intersecting genes were identified by overlapping 7,349 ARGs-related genes, 5,565 
module genes, and 25 common DEGs. Further, five biomarkers (AQP9, HLA-DQA1, MCEMP1, NKG7, and S100A12) were 
obtained, and a nomogram was constructed and verified based on these biomarkers. Notably, the biomarkers were 
significantly associated with CD8 T cells and neutrophils. In addition, the drugs related to biomarkers were predicted, 
and ATOGEPANT with the molecular target (S100A12) had a high binding affinity (docking score = -10 kcal/mol).

Conclusion  AQP9, HLA-DQA1, MCEMP1, NKG7, and S100A12 were identified as biomarkers related to ARGs in AMI, 
which provides a new perspective to study the relationship between ARGs and AMI.
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Background
In people’s daily lives, cardiovascular disease (CVD) 
is very common, harmful to human health, and easily 
causes disability and even death of patients [1]. Acute 
myocardial infarction (AMI) is a common type, which 
is caused by coronary artery disease, which poses great 
harm to human health and even life safety. At present, 
AMI has become an important cause of disability and 
even death of patients [2]. In the process of clinical treat-
ment for this disease, taking into account the characteris-
tics of the disease, the focus of treatment is to timely and 
effective revascularization of the patient’s coronary artery 
to promote the recovery of blood flow. However, early 
diagnosis is the foundation for timely revascularization. 
The bioinformatics method has attracted much attention, 
but it is not applied enough in the research of atheroscle-
rosis cardiovascular disease prevention. It is expected to 
become an important tool for doctors to promote the 
precise medical treatment and personalized treatment 
of atherosclerosis cardiovascular disease [3]. The role of 
epigenetic regulatory genes in atherosclerosis has been 
widely studied and considered as important biomarkers 
and potential therapeutic targets in disease monitoring 
[4]. Transcription factors and epigenetic mechanisms 
play a key role in the pathophysiological process of ath-
erosclerosis, involving the influence of epigenetic modi-
fications on transcription factor binding, expression and 
chromatin remodeling [5]. Research has shown that low 
methylation of the specific region of the HLA-G gene 
5’UTR CpG island is more significant in non critical ste-
nosis coronary heart disease (CHD) patients than in indi-
viduals with coronary artery stenosis [6]. In addition, the 
methylation changes of AIRE1 and ALOX12 promoters 
can be used as a new epigenetic marker of atherosclerosis 
[7].

Histone acetylation means that histone acetyltrans-
ferase catalyses the acetyl group of Acetoacetyl coen-
zyme A to bind to the corresponding target of histone, 
so as to relax the ribosome and activate transcription 
[8]. A study of myocardial injury has found that histone 
acetylation regulation-related genes undergo significant 
changes under the stimulation of cardiac injury, and 
the activated HDAC4 (histone acetylation regulation 
gene) induces myocardial injury reperfusion [9]. Histone 
acetylation plays a significant role in various ischemia-
reperfusion-induced tissue injuries. Previous studies 
have also confirmed that reversible protein acetylation 
participates in pathological heart remodelling and plays 
a significant role in the Ischemia/Reperfusion (I/R) envi-
ronment [10]. In the past, some scholars have reported 
through research that there is a certain correlation 
between the occurrence of ischemic heart disease and 
acetylation induced by histone deacetylase [11]. Recently, 
some new evidence shows that histone acetylation will 

participate in the process of oxidized low-density lipo-
protein (oxLDL)-induced atherosclerosis. Meanwhile, 
oxLDL can also affect the expression of some factors in 
endothelial cells through histone acetylation [12, 13]. 
And meanwhile, some scholars have also pointed out 
through research that oxLDL has a positive effect in 
reducing the level of inflammatory response. Meanwhile, 
the study also pointed out that Aspergillus A, as a histone 
deacetylase inhibitor, can have a salvage effect on this 
inhibitory effect [14]. It can be seen that histone acetyla-
tion plays an important role in the inflammatory process 
of atherosclerosis, and there is a very close correlation 
with the occurrence of inflammation. Therefore, oxLDL 
can affect histone acetylation, leading to the change of its 
expression level. In addition, combined with the research 
results of some scholars, it was found that the upregula-
tion of H3K9 and H3K27 acetylation levels in activated 
smooth muscle cells plays an important role in effectively 
stabilizing plaques [15]. SMC apoptosis will cause plaque 
rupture, significantly increase the incidence rate, and 
increase the risk of death of patients. At the same time, 
the activation of metalloproteinases will also have the 
above effects [16]. Some scholars have found that histone 
acetylation can have a certain impact on some factors 
related to atherosclerosis.

In addition, there are also reports that the rise of 
MMP-3 level will cause plaque rupture [17]. In the past, 
some scholars have conducted relevant research from 
the perspective of epigenetics and pointed out that there 
is a certain connection between histone acetylation and 
MMP expression [18]. Therefore, in this stage, histone 
acetylation will affect the expression of MMP, and make 
atherosclerosis have certain invasiveness through the 
rise of this indicator level. In clinical practice, in order to 
effectively improve the management level of AMI patients 
and maximize their survival rate, it is necessary to make 
rapid and accurate diagnoses of the disease. At present, 
there is some strong evidence that troponin can be used 
as an important biomarker for detection and analysis in 
the clinical diagnosis of this disease. Meanwhile, previous 
studies have also confirmed that cTn levels are elevated in 
patients with some types of cardiovascular disease other 
than AMI [19]. However, in order to improve the analysis 
and diagnostic effectiveness of diseases, we still need to 
actively analyse, explore, and screen more new and reli-
able biomarkers, improve the accuracy and sensitivity of 
clinical diagnosis, and better improve the clinical diag-
nosis and analysis management effectiveness of diseases. 
The use of bioinformatics can identify the cardiovascu-
lar disease modules behind disturbances in interaction 
groups, which provides insights into the mechanisms of 
cardiovascular disease. Biomarkers and drug targets pro-
vide new insights [20]. Protein protein interaction (PPI) 
represents the direct and specific physical binding of two 
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proteins, providing a more comprehensive understanding 
of biologically relevant interactions [21]. Therefore, this 
study is based on bioinformatics and uses machine learn-
ing and the protein-protein interaction (PPI) networks 
to screen a new set of biomarkers. At the same time, it 
analyses the biological pathways, immune characteristics, 
and potential drugs that biomarkers may participate in, 
providing new insights of histone acetylation that may 
participate in AMI.

Methods
Data source
From the Gene Expression Omnibus (GEO) database (​
h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​/​g​d​s), five AMI ​d​a​t​a​s​e​t​
s (GSE60993, GSE48060, GSE61144, GSE24548, and 
GSE97320) were downloaded, respectively. A total of 17 
blood samples from AMI patient (patients with acute 
coronary syndromes undergoing primary percutaneous 
coronary intervention within 4  h of the onset of chest 
pain), and seven control blood samples (normal coronary 
angiograms) from GSE60993 were included. A total of 31 
blood samples from patients with first acute myocardial 
infarction collected within 48  h, and 21 control blood 
samples (echocardiogram normal) from GSE48060 were 
included. A total of 7 blood samples from AMI patient 
(patients with acute coronary syndromes undergoing 
primary percutaneous coronary intervention within 
4  h of the onset of chest pain), and 10 control blood 
samples (healthy subjects with normal coronary angio-
grams) from GSE61144 were used as the validation set. 
The miRNA expression profiling dataset GSE24548 con-
tained four platelet samples from AMI patient (platelets 
in patients with acute myocardial infarction within 6  h 
of symptom onset) and 3 control samples (no cardiovas-
cular disease). The lncRNA expression profiling dataset 
GSE97320 contained 3 blood samples from AMI patient 
and 3 control samples. A total of 77 histone acetylation 
regulatory genes (ARGs) were downloaded from previ-
ous studies [22], including 22 writers, 18 erasers, and 43 
readers, among which six genes serve as both writers and 
readers (Supplementary Table 1). The flow chart of this 
study is shown in Supplementary Fig. 1.

Identification of ARGs-related genes
The gene set variation analysis (GSVA) of ARGs in AMI 
and control samples in the GSE60993 dataset was per-
formed using the GSVA package (version 1.48.3) [23]. 
Correlations between genes in the GSE60993 dataset and 
scores of ARGs were calculated to obtain ARGs-related 
genes (|cor| > 0.4, P < 0.05). The most relevant mod-
ules with scores of ARGs were screened by Weighted 
Gene Co-Expression Network Analysis (WGCNA) in 
GSE60993 using the WGCNA package (version 1.73) 
[24]. First, the samples were clustered to remove outliers. 

And then, the determination of the soft threshold (β) 
was performed (R2 = 0.8). The co-expression matrix was 
established, identifying gene modules and labelling them 
with different colours (minimum 30 genes per mod-
ule). The modules with the highest relevance to scores 
of ARGs were defined as key modules, and intersecting 
ARGs-related genes were obtained by overlapping the 
key module and ARGs-related genes.

Differential expression analysis and acquisition of 
intersecting genes
Differential expression analysis was performed using 
the limma package (version 3.52.2) in AMI and con-
trol samples in the GSE60993 and GSE48060 datasets, 
respectively, and the ggplot2 package (version 3.3.6) was 
used to display heatmaps and volcano plots of the expres-
sion of the differential genes. The thresholds were set to 
|log2FC| > 0.5 and P < 0.05 [25]. Differentially expressed 
genes (DEGs) obtained in the GSE60993 were defined as 
DEGs1. DEGs obtained in the GSE48060 were defined 
as DEGs2. Intersecting DEGs were obtained by taking 
the intersection of DEGs1 and DEGs2 (up- and down-
regulated genes intersection were taken separately). 
Intersecting genes were obtained by taking the intersec-
tion of intersecting ARGs-related genes and intersecting 
DEGs. The gene ontology (GO) and kyoto encyclopedia 
of genes and genomes (KEGG) functional enrichment 
analysis of the intersecting genes was conducted with 
the “clusterProfiler” package (version 4.4.4) in R [26] (adj. 
P value < 0.05). Subsequently, the PPI network for inter-
secting genes was constructed using the STRING data-
base (https://cn.string-db.org/) and candidate genes were 
obtained (score > 0.4).

Acquisition and validation of biomarkers
First, the expression of the candidate genes was anal-
ysed by least absolute shrinkage and selection operator 
(LASSO) regression using the R package glmnet (version 
4.1-8) [27], and the optimal lambda value was determined 
by 10-fold cross-validation using the cv.glmnet func-
tion. Variables with non-zero coefficients at the optimal 
lambda value were feature genes. Then, the stability of 
the LASSO model was validated by constructing support 
vector machine recursive feature elimination (SVM-RFE) 
and the eXtreme gradient boosting (XGBoost) models. 
Finally, the diagnostic performance of the characteris-
tic genes was assessed using the pROC package (version 
1.18.5) in R [28], and receiver operating characteristic 
(ROC) with the area under curve (AUC) value > 0.7 were 
considered as biomarkers in AMI. The expression of bio-
markers in AMI and control samples were observed in 
GSE60993 and GSE61144 and box plots were drawn with 
the “ggplot2” package (version 3.3.6) in R [29]. In addi-
tion, we evaluated the diagnostic performance of these 
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biomarkers using the “pROC” package (version 1.18.5) 
[28].

Establishment of alignment diagram and enrichment 
analysis of biomarkers
Alignment diagram of biomarkers was constructed using 
the rms package (version 6.3-0) in R [30]. The predic-
tive power of the alignment diagram was assessed using 
calibration curves. Ingenuity pathway analysis (IPA) of 
DEGs1 was performed to obtain the relevant pathways, 
involved in DEGs1, and then the pathways involved in 
biomarkers were screened. Signalling pathways with 
P < 0.05 were selected and ranked according to -log(P); 
z-score > 2 indicates that the pathway is activated and 
z-score <-2 indicates inhibition. In addition, the sig-
nalling pathway with the largest |z-score| ranking and 
significance was selected to demonstrate the effect of 
the biomarker on signalling in that signalling pathway. 
Finally, Gene set enrichment analysis (GSEA) for bio-
markers was conducted based on KEGG genes sets with 
ClusterProfiler package (version 4.4.4) in the GSE60993 
[31] (adj. P value < 0.05, |NES|>1).

Immune analysis, drug prediction and molecular Docking
The immune abundance of 22 immune cells in the 
AMI and control samples of the GSE60993 was calcu-
lated using the CIBERSORT algorithm [32]. Differential 
immune cells were compared between AMI and control 
samples using the wilcox test (P < 0.05), and correlations 
between biomarkers and differential immune cells were 
calculated using spearman. The drugs for the biomark-
ers were predicted using the Drug-Gene Interaction 
database (DGIdb, https://www.dgidb.org/) and the drugs 
were visualized using PubChem database (​h​t​t​p​​s​:​/​​/​p​u​b​​c​h​​e​
m​.​​n​c​b​​i​.​n​l​​m​.​​n​i​h​.​g​o​v​/).

Establishment of regulatory network
Differentially expressed miRNAs (DE-miRNAs) and 
differentially expressed lncRNAs (DE-lncRNAs) were 
obtained by differential expression analysis in the 
GSE24548 and GSE97320 datasets using the limma 
package (version 3.52.2) by setting |log2FC| > 0.5 and 
P < 0.05 [25]. In addition, miRNAs for biomarkers were 
predicted by using the miRWalk database (​h​t​t​p​​:​/​/​​m​i​r​
w​​a​l​​k​.​u​​m​m​.​​u​n​i​-​​h​e​​i​d​e​l​b​e​r​g​.​d​e​/), and the intersecting ​m​
i​R​N​A​s were obtained by take intersection of miRNAs 
and DE-miRNAs. The lncRNAs of the intersecting miR-
NAs were obtained by starbase database (​h​t​t​p​​s​:​/​​/​s​t​a​​r​b​​
a​s​e​​.​s​y​​s​u​.​e​​d​u​​.​c​n​​/​s​t​​a​r​b​a​​s​e​​2​/​i​n​d​e​x​.​p​h​p), and the ​i​n​t​e​r​s​e​c​
t​i​n​g lncRNAs were obtained by taking the intersection 
of lncRNAs and DE-lncRNAs. The relationship pairs 
of upregulated mRNAs, downregulated miRNAs, and 
upregulated lncRNAs were generated, meanwhile, the 
relationship pairs of downregulated mRNAs, upregulated 

miRNAs, and downregulated lncRNAs were generated as 
well. Based on this, the lncRNA-miRNA-mRNA network 
maps were constructed.

Clinical samples collection, RNA extraction and 
quantitative PCR (qPCR)
From February 27, 2023 to March 13, 2023, we collected 
10  ml blood samples from 10 patients with acute myo-
cardial infarction (acute coronary syndrome patients 
who received direct percutaneous coronary intervention 
within 4  h after chest pain onset) and 10 healthy indi-
viduals who underwent physical examination at Shanxi 
Norman Bethune Hospital (with normal coronary angi-
ography). Collect blood samples and store them at 2–6 
℃. QPCR is used to detect the expression levels of bio-
markers in clinical blood samples. All samples were lysed 
with TRIzol Reagent, and total RNA was isolated follow-
ing the manufacturer’s instructions. The extracted RNA 
was reverse-transcribed to cDNA using the SureScript-
First-strand-cDNA-synthesis-kit before qPCR. The qPCR 
reaction consisted of 3 µl of reverse transcription prod-
uct, 5 µl of 2xUniversal Blue SYBR Green qPCR Master 
Mix, and 1 µl each of forward and reverse primer. PCR 
was performed in a BIO-RAD CFX96 Touch TM PCR 
detection system (Bio-Rad Laboratories, Inc., USA) 
under the following conditions: initial denaturation at 
95℃ for 1 min, followed by 40 cycles that each involved 
incubation at 95℃ for 20  s, 55℃ for 20  s, and 72℃ for 
30  s. The detailed forward and reverse primers were 
shown in the Supplementary Table 2. All primers were 
synthesized by Servicebio (Servicebio, Wuhan, China). 
The GAPDH served as an internal control, and the rela-
tive expression of biomarkers was determined using the 
2−ΔΔCt method. The experiment was repeated in triplicate 
on independent occasions. Statistical differences in the 
five biomarkers between AMI samples and control sam-
ples were detected by paired t-test using GraphPad Prism 
5.

Statistical analysis
Bioinformatics analysis was proceeded in R software. 
Wilcoxon test was employed in immune infiltration anal-
ysis between AMI and control samples. Statistical differ-
ences for biomarkers expressions between clinical AMI 
samples and control samples were detected by paired 
t-test.

Results
2,739 intersecting ARGs-related genes were identified by 
the GSVA and WGCNA
The GSVA in AMI and control samples in the GSE60993 
dataset results showed that there were significant differ-
ences in scores of ARGs between the AMI and control 
samples (P < 0.01, Fig. 1a). A total of 7,349 ARGs-related 

https://www.dgidb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://starbase.sysu.edu.cn/starbase2/index.php
https://starbase.sysu.edu.cn/starbase2/index.php
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Fig. 1  Identification of histone acetylation regulatory genes (ARGs)-related genes. (a) Gene set variation analysis (GSVA) analysis displayed the scores of 
ARGs of AMI and control samples in the GSE60993 dataset. (b) Weighted Gene Co-Expression Network to identify key modules related to scores of ARGs, 
including sample clustering dendrogram and trait heatmap to remove outliers, Analysis of the scale-free fit index (left) and the mean connectivity (right) 
for various soft-thresholding powers, cluster dendrogram of all DEGs based on similar expression patterns, and correlations heatmap between modules 
and traits were showed. (c) Venn diagrams for 2,739 ARGs-related genes
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genes were obtained (Supplementary Table 3). The soft 
threshold in the WGCNA analysis was finally set to 4, the 
adjacency and dissimilarity coefficients between genes 
were calculated, and the tree was divided into different 
modules using dynamic cropping methods, and the blue 
module which contained 5,565 genes was the most rele-
vant module for AMI were obtained (|Cor|> 0.5, P < 0.05, 
Fig. 1b). A total of 2,739 intersecting ARGs-related genes 
are obtained by overlapping the key module and ARGs-
related genes (Fig. 1c).

There were 18 intersecting genes related histone 
acetylation in AMI
A total of 996 DEGs1 were obtained from GSE60993, of 
which 576 were up regulated and 417 down regulated 
(Fig.  2a, b). A total of 66 DEGs2 were obtained from 
GSE48060, of which 23 were up-regulated and 43 down-
regulated (Fig.  2c, d). A total of 25 intersecting DEGs 
were obtained by taking the intersection of DEGs1 and 
DEGs2 (Fig.  2e). A total of 18 intersecting genes were 
obtained by taking the intersection of 2,739 intersecting 
ARGs-related genes and 25 intersecting DEGs (Fig.  2f ). 
The GO entries enriched by intersecting genes such 
as cell killing, animal organ regeneration, and defense 
response to bacterium (Fig. 2g). The KEGG entries were 
enriched by intersecting genes such as graft-versus-host 
disease, viral myocarditis, and natural killer cell mediated 
cytotoxicity (Fig.  2h). To explore whether interactions 
existed between the 18 intersecting genes, a PPI network 
was created (Fig.  2i) and obtained 11 candidate genes, 
among which there are strong interactions between 
ANXA3 and S100A12, GZMB and PRF1.

Five biomarkers were determined by machine learning, 
ROC, and qPCR
When lambda.min was 0.082 the results of LASSO 
regression analysis were selected to obtain five character-
istic genes, which were AQP9, HLA-DQA1, MCEMP1, 
NKG7, and S100A12 (Fig. 3a). The stability of the LASSO 
model was validated by SVM-REF and XGboost models 
(AUC > 0.9) (Fig.  3b, Supplementary Fig.  2). The ROC 
curves of the characteristic genes in the GSE60993 and 
GSE48060 datasets were plotted in Fig. 3c, and the result 
shows that the control and AMI samples in the GSE60993 
and GSE48060 datasets were well distinguished by all 
five characteristic genes (AUC > 0.7). In addition, the 
expression trends of five biomarkers were consistent in 
the training and validation sets (Fig. 3d). The qPCR was 
used to verify the expression levels of biomarkers and the 
results showed that the expression of other biomarkers 
was consistent with training and validation sets, except 
for NKG7 (Fig. 3e).

The biomarkers were enriched in ribosomes by IPA and 
GSEA analyses
Alignment diagram of five biomarkers was constructed 
(Fig.  4a). The calibration curves and decision curves 
show that the alignment diagram has good predictive 
performance (Fig.  4b). The results of IPA analysis show 
that biomarkers are involved in two pathways includ-
ing MSP-RON signalling in macrophages pathway and 
PD-L1 cancer immunotherapy pathway which were acti-
vated, and five pathways including COS-ICOSL signal-
ling in T helper cells and calcium-induced T lymphocyte 
apoptosis which were inhibited (Fig.  4c). In addition, 
the effect of biomarkers on signalling in the |z-score| 
top-ranked signalling pathway (calcium-induced T lym-
phocyte apoptosis) is shown in Fig. 4d. In order to under-
stand how biomarkers may be involved and influence the 
onset of AMI, GSEA was performed. The KEGG entries 
involved in biomarkers including ribosome, DNA repli-
cation, and allograft rejection (Fig. 4e).

Four immune cells and 14 drugs were identified as 
associated with the biomarkers
To explore whether the biomarkers could influence AMI 
patient prognosis by affecting immunity, an immune 
analysis was completed. Four immune cells (neutro-
phils, resting NK cells, resting CD4 memory T cells, 
CD8 T cells) were differentially expressed in AMI and 
control samples (P < 0.5, Supplementary Fig.  3.). Corre-
lations between these four differential immune cells and 
biomarkers were calculated, and there was a strong cor-
relation between all of the differential immune cells and 
biomarkers expression (|cor|>0.3 and P < 0.5, Fig. 5a). To 
explore which drugs the biomarkers might be affected 
by, drug predictions were completed in the DGIdb data-
base and a total of 14 drugs were obtained, as shown in 
Supplementary Table 4. The structure of the highest scor-
ing drug atogepant was visualized. We selected ATOGE-
PANT for molecular docking with S100A12, which has a 
binding energy of − 10 kcal/mol (Fig. 5b).

A lncRNA-miRNA-mRNA regulatory network was 
constructed
A total of 79 DE-miRNAs and 353 DE-lncRNAs were 
obtained from GSE24548 and GSE97320, separately 
(Supplementary Fig.  4a-d). And meanwhile, 774 miR-
NAs for biomarkers were predicted, and four intersecting 
miRNAs (hsa-miR-199a-5p, hsa-miR-139-3p, hsa-miR-
140-5p, and hsa-miR-548d-5p) were obtained by take 
intersection of 774 miRNAs and 79 DE-miRNAs (Sup-
plementary Fig.  4e). 175 lncRNAs for four intersecting 
miRNAs were predicted, and 12 intersecting lncRNAs 
(MALAT1, FTX, PRKCQ-AS1, LINC00886, NEAT1, 
LINC00667, LINC00313, LINC01133, LINC00944, 
LINC00691, LINC00662, SNHG9) were obtained by 
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Fig. 2  Collection and functional enrichment analysis of key intersecting genes. (a) Heatmap and (b) Volcano plot of 996 differentially expressed genes 
(DEGs) between the AMI and control samples in GSE60993. (c) Heatmap and (d) Volcano plot of 66 DEGs between the AMI and control samples in 
GSE48060. The screening criteria are set to |Log2FC| > 0.5 and P < 0.05. (e) Venn diagrams for 25 intersecting DEGs in two AMI-related cohorts. (f) Venn 
diagrams for 18 intersecting ARGs-related DEGs in AMI. (g) The Gene Ontology (GO) analysis for intersecting ARGs-related DEGs. (h) The most enriched 
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms of intersecting ARGs-related DEGs. (i) The protein-protein interaction (PPI) network for intersect-
ing ARGs-related DEGs
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Fig. 3  Screening of five biomarkers in AMI. (a) Cross-validation for tuning parameter selection in the least absolute shrinkage and selection operator 
(LASSO) Cox model was shown and five characteristic genes were selected. (b) Receiver operating characteristic (ROC) curves of the LASSO model-based 
genes in the support vector machine recursive feature elimination (SVM-RFE) and the extreme gradient boosting (XGBoost) algorithms. (c) ROC analysis 
of five characteristic genes in the GSE60993 and GSE48060 datasets. (d) Boxplots for the expression levels of five characteristic genes in the GSE60993 
and GSE48060 datasets. (e) Results of quantitative PCR (qPCR) for the expression levels of five characteristic genes in the clinical AMI and normal blood 
samples. * P < 0.05, ** P < 0.01, *** P < 0.001
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Fig. 4  Construction of the nomogram and analysis of five biomarkers. (a) Nomogram was constructed based on five biomarkers. (b) Calibration curve of 
nomogram (C-index = 1). c-d) Bar chart of enriched canonical pathways of DEGs between the AMI and control samples in GSE60993 was exhibited using 
the Ingenuity Pathway Analysis (IPA), where orange represents activation, blue represents inhibition, in which the effect of biomarkers for the signalling 
pathway of calcium-induced T lymphocyte apoptosis was further mapped. e) Gene set enrichment analysis (GSEA) results of five biomarkers
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take intersection of 175 lncRNAs and 353 DE-lncRNAs 
(Supplementary Fig.  4f ). The lncRNA-miRNA-mRNA 
networks was constructed with 16 edges and 15 nodes 
(Fig.  5c), both mRNAs and lncRNAs are upregulated 
and miRNAs are downregulated in this network such as 
MCEMP1 upregulate, hsa-miR-199a-5p downregulate, 
LINC00313 upregulate and other relationship pairs.

Discussion
Considering the great harm of AMI and the rapid change 
of many patients’ conditions, clinical attention is paid to 
the early clinical diagnosis of suspected patients, so as to 
confirm the diagnosis and implement targeted treatment 

for patients as soon as possible. However, some patients 
still cannot get a timely, effective, and accurate diagnosis, 
which affects the prognostic effect of clinical treatment 
[33, 34]. In the past, many scholars have conducted in 
vitro myocardial cell hypoxia/reoxygenation (H/R) and 
in vivo I/R experiments, and through analysis of a large 
number of experimental results, studies have found that 
many epigenetic factors are involved in the pathogenesis 
of AMI, and have different effects [35, 36]. Meanwhile, 
previous studies have also shown a close relation-
ship between changes in epigenetic expression and an 
increase in myocardial infarction area and cardiac dys-
function during myocardial I/R [37]. This study used 77 

Fig. 5  Immune related analyses and drug prediction targeted biomarkers. (a) Pearson correlation heatmap between five biomarkers and four differen-
tial expressed immune cells. (b) The structure of the highest scoring drug ATOGEPANT, and molecular docking results of targets and ATOGEPANT using 
AutoDock. (c) The lncRNA-miRNA-mRNA regulatory network diagram. Blue represents lncRNAs, green represents miRNAs, and red represent biomarkers
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histone acetylation regulatory genes (ARGs) as the back-
ground gene set for gene set variation analysis (GSVA), 
and ultimately identified a new set of biomarkers (AQP9, 
HLA-DQA1, MCEMP1, NKG7, S100A12) whose func-
tions and pathways may directly or indirectly affect the 
occurrence and development of acute myocardial infarc-
tion. In addition, the column chart constructed based on 
biomarkers has good predictive performance. Based on 
the conclusions drawn from this study, it is found that in 
the process of clinical analysis, diagnosis, and treatment 
planning for patients with acute myocardial infarction, 
relevant biomarkers and targets can be actively identified 
from the field of epigenetics [8].

Analysis of GSEA results reveals that enrichment path-
ways are related to inflammatory and immune response 
pathways. The occurrence of AMI is mainly related to 
atherosclerosis, so this disease is also regarded as a dis-
ease caused by chronic inflammation [38]. Some sig-
nalling pathways in macrophages and tumour necrosis 
factor signalling pathways are involved in related inflam-
matory responses and may have some adverse effects 
on patients with AMI [39]. These pathways are closely 
related to AMI. In atherosclerotic plaque, a large number 
of chemotactic circulating immune cells will participate 
in the process of endothelial damage and lipid infiltration 
[40]. And Neutrophils are a very important cell type in 
the progression of atherosclerosis, and play a significant 
role in promoting disease progression. Neutrophils can 
release a large number of different types of adhesion fac-
tors and cytokines, promote the increase of plaque area, 
and enhance its stability [41], In addition, neutrophils also 
have a positive promoting effect on macrophage phago-
cytosis of lipids and promote the elevation of MMP-9 
levels [42, 43]. Notably, there was a strong association 
between immune-related genes and AMI, and this was 
also the case with immune cells, as reported in another 
independent study [44]. In this study, the obtained 
research results reiterated the close correlation between 
these pathways and CAD, indicating that we should 
continue to pay attention to related issues. Through the 
observation and analysis of the results obtained by some 
scholars in the past, it can be found that there is a certain 
relationship between the occurrence of cardiovascular 
diseases and HLA-DRB1 and DQA1 genomes [45]. There 
are some potential biomarkers for AMI, and these bio-
markers can provide new targets for clinical treatment of 
patients with this kind of disease. Studies have found that 
overexpression of S100A12 may cause excessive inflam-
matory response, and at the same time, it also leads to 
certain oxidative stress responses, which are related to 
AMI to a certain extent [37]. Therefore, this indicator can 
be used as a potential biomarker for AMI. Meanwhile, 
the results also demonstrate that the five characteristic 
biomarkers play a crucial role in AMI. In addition, after 

analysing the results of certain studies, it is not difficult 
to find that there are certain correlations between bio-
markers and differentially expressed immune cells, such 
as NK cells resting was negatively correlated with AQP9.

In the acute stage of cardiac injury, blood flow will 
suddenly stop, leading to the occurrence of myocardial 
infarction and various inflammatory reactions. In addi-
tion, once the dead cells begin to die, the priming of the 
innate immune system is triggered, and this priming 
process occurs immediately, accompanied by the onset 
of myocardial infarction [43]. There is a certain correla-
tion between neutrophils and the occurrence of infarct 
tissue injury [46], the effect is reflected in many aspects, 
such as promoting the reduction of inflammatory levels, 
positively promoting wound healing, etc [43]. Therefore, 
in the process of treating AMI patients, bioinformat-
ics analysis can be actively carried out to identify mark-
ers related to the degree of immune cell infiltration, in 
order to better guide the development of clinical treat-
ment plans. Previous animal experiments have shown a 
certain correlation between the high expression of the 
immune-related gene AQP9 and immune cells in AMI 
mouse models. AQP9 has the strongest positive correla-
tion with neutrophils and the strongest negative correla-
tion with T cell CD8 [47], which proves that the results 
of this study are accurate. A comprehensive analysis of 
the extensive evidence mentioned earlier, as well as the 
relevant findings of this study, it is suggested that we 
should pay attention to and analyse various infiltrating 
immune cells in the future analysis and research of AMI 
In vitro, atofen can inhibit CGRP dependent vasodila-
tion in human coronary arteries [48]. Previous studies 
have found that there are no signals associated with the 
occurrence of cardiovascular events related to atogipan 
[49, 50]. During ischemia, CGRP can be used as a rescue 
molecule. Blocking the CGRP receptor after an ischemic 
event may worsen the results, as observed in previous 
studies in mice [51]. Ishii [42] et al. pointed out for the 
first time through research that there is a correlation 
between lncRNA MIAT and MI. thirty-four. In addition, 
some scholars pointed out through the study of periph-
eral blood related conditions of patients with AMI that 
abnormal changes in the expression level of MIAT can be 
observed in peripheral blood cells of patients after AMI, 
and there is a certain relationship between it and the 
prognosis of patients [43].

This study constructed an lncRNA miRNA mRNA 
relationship, in which hsa-miR-199a-5p and hsa-miR-
140-5p were downregulated, while SNHG9 was upreg-
ulated. Studies have shown that hsa-miR-199a-5p 
inhibits the migration and invasion of HCC cells by tar-
geting the MAP4K3 promoter, thereby exerting its pro-
tective effect [52]. In cardiomyocytes, hsa-miR-199a-5p 
can protect cardiomyocytes from damage under hypoxic 
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conditions by targeting HIF1α [53]. On the other hand, 
hsa-miR-140-5p may inhibit drug induced myocardial 
cell hypertrophy and other pathological processes at 
the myocardial level through the mitogen activated pro-
tein kinase (MAPK) pathway, particularly the extracel-
lular signal regulated kinase (ERK) pathway. It is worth 
noting that the elevation of hsa-miR-140-5p in early 
plasma of patients with acute coronary syndrome (ACS) 
is mainly derived from coronary endothelial cells (CECs) 
and monocytes [54]. In addition, studies have found that 
upregulated SNHG9 is negatively correlated with cardiac 
function and can mediate the pathogenesis of dilated car-
diomyopathy through the miR-326/EPHB3 axis. It is an 
important regulatory factor in the development of dilated 
cardiomyopathy [55]. These research results further sup-
port the potential roles of hsa-miR-140-5p, hsa-miR-
199a-5p, and SNHG9 in cardiovascular disease.

AQP9, HLA-DQA1, MCEMP1, NKG7, S100A12 can 
serve as a diagnostic biomarker for AMI, NK. cells. rest-
ing, all of these cytokines may be involved in the occur-
rence and development of AMI. In the immunotherapy of 
AMI patients, the above immune cells may be regarded 
as important therapeutic targets. However, there are 
still some limitations to this study. Firstly, the samples 
are sourced from public databases, and some samples 
were collected at unspecified times, which may affect 
the accuracy and clinical application value of biomark-
ers. In addition, the diversity of sample size and sources 
may also lead to biased results. Finally, due to the small 
sample size, it may affect the reliability and generaliza-
tion ability of the research results. Therefore, in future 
research, we will strive to expand the sample size to 
enhance the statistical power of the results; At the same 
time, strengthen cooperation with clinical institutions to 
ensure timely and standardized collection of samples, in 
order to optimize the detection effectiveness of biomark-
ers. In addition, we will also consider incorporating more 
key factors that may affect the disease progression to fur-
ther enhance the depth and comprehensiveness of our 
research. At the technical level, we will actively explore 
and apply more advanced detection methods, aiming to 
improve the detection speed and accuracy of biomarkers, 
thereby providing more reliable scientific basis for clini-
cal decision-making.

Conclusions
In the study, we identified 18 intersecting genes related 
to histone acetylation in AMI. Followed by combin-
ing LASSO, SVM-RFE, and XGBoost algorithms, the 
five characteristic genes were obtained, and they were 
determined as biomarkers by ROC and qPCR verifica-
tion. These five biomarkers including AQP9, HLA-DQA1, 
MCEMP1, NKG7, and S100A12 had the potential to diag-
nose AMI disease from the population. By IPA and GSEA 

analyses, we found that these biomarkers related to the 
ribosome, DNA replication, allograft rejection, etc. Inter-
estingly, the neutrophils, resting NK cells, resting CD4 
memory T cells, and CD8 T cells were all linked with 
these biomarkers. In addition, ATOGEPANT related 
to S100A12 was predicted, and it could be a potential 
therapeutic drug in AMI. Together, the five biomarkers 
identified in this study may provide new insights into the 
diagnosis of AMI.
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