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Abstract 

N6-methyladenine (6 mA) is a pivotal DNA modification that plays a crucial role in epigenetic regulation, gene 
expression, and various biological processes. With advancements in sequencing technologies and computational 
biology, there is an increasing focus on developing accurate methods for 6 mA site identification to enhance early 
detection and understand its biological significance. Despite the rapid progress of machine learning in bioinformat-
ics, accurately detecting 6 mA sites remains a challenge due to the limited generalizability and efficiency of existing 
approaches. In this study, we present Deep-N6mA, a novel Deep Neural Network (DNN) model incorporating optimal 
hybrid features for precise 6 mA site identification. The proposed framework captures complex patterns from DNA 
sequences through a comprehensive feature extraction process, leveraging k-mer, Dinucleotide-based Cross Covari-
ance (DCC), Trinucleotide-based Auto Covariance (TAC), Pseudo Single Nucleotide Composition (PseSNC), Pseudo 
Dinucleotide Composition (PseDNC), and Pseudo Trinucleotide Composition (PseTNC). To optimize computational 
efficiency and eliminate irrelevant or noisy features, an unsupervised Principal Component Analysis (PCA) algorithm 
is employed, ensuring the selection of the most informative features. A multilayer DNN serves as the classification 
algorithm to identify N6-methyladenine sites accurately. The robustness and generalizability of Deep-N6mA were 
rigorously validated using fivefold cross-validation on two benchmark datasets. Experimental results reveal that Deep-
N6mA achieves an average accuracy of 97.70% on the F. vesca dataset and 95.75% on the R. chinensis dataset, out-
performing existing methods by 4.12% and 4.55%, respectively. These findings underscore the effectiveness of Deep-
N6mA as a reliable tool for early 6 mA site detection, contributing to epigenetic research and advancing the field 
of computational biology.
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Introduction
DNA modifications marked by N6-methyladenine (6 mA) 
emerged as notable epigenetic markers that respond to 
environmental factors. The study on hypoxic-stressed 
human cells shows a dramatic increase in mitochon-
drial DNA (6  mA) levels. In the mouse brain, scientists 
detected an inverse relationship between 6 mA levels and 
stress-responsive neuronal genes, thus indicating their 
importance in adaptation to stress events. Caenorhabdi-
tis elegans experiences mitochondrial stress, which leads 
to elevated 6  mA levels that maintain adaptive mecha-
nisms that are available between generations. In rice cells, 
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the levels of 6 mA exhibit an opposite pattern concerning 
cold resistance, but they emerge as positively linked to 
salt and heat adaptation mechanisms [1]. The active 6 mA 
signaling underlies vital stress adaptation mechanisms 
within eukaryotic organisms. DNA N6-methyladenine 
(6 mA) analysis in molecular biology and stress response 
research requires multiple experimental approaches, 
which researchers have developed due to their fun-
damental role in epigenetics [2, 3]. The experimental 
approaches demonstrate effective results but encounter 
limitations due to their high costs, extensive effort input, 
and lengthy duration requirements [4, 5]. Identifying 
DNA N6-methyladenine (6 mA) sites requires fast, reli-
able computational approaches. Machine learning and 
deep learning provide efficient, cost-effective alternatives 
to experimental methods, enhancing detection accuracy 
and biological insights [6, 7].

Several computational models have been devel-
oped to predict DNA N6-methyladenine (6  mA), 
employing machine learning and deep learning tech-
niques, i.e., SNNRice6mA [8], DNA6mA-MINT [9], 
SpineNet-6  mA [10], and ENet-6  mA [11]. For exam-
ple, SNNRice6mA, proposed by Yu et al. [8], is a neural 
network model that eliminates the need for manually 
crafted features, allowing the model to learn directly 
from sequence data. This approach achieved 93% and 
92% accuracy on two benchmark genome datasets (i.e., 
R. chinensis and F. vesca). Similarly, Rehman et  al. [9] 
presented DNA6mA-MINT, a deep learning-based tool 
that follows Chou’s 5-step rule and integrates CNN and 
Long Short-Term Memory (LSTM) layers to capture 
high-level features and sequential patterns. The pro-
posed model achieved an average accuracy of 92.53% 
and 93.2% using cross-validation across combined-
species genomes. Further, Li et  al. [12] introduced 
Deep6mA, a deep learning framework that lever-
ages convolutional neural networks (CNNs) to extract 
sequence features automatically. Deep6mA demon-
strated impressive performance, achieving an accuracy 
of 94% on the rice genome while showcasing strong 
generalization capabilities. The model maintained over 
90% accuracy when applied to other species, including 
Arabidopsis thaliana, Fragaria vesca, and Rosa chinen-
sis, highlighting its potential for cross-species applica-
tions. Similarly, Hasan et al. [13] presented i6mA-Fuse, 
which combines a random forest (RF) model with a lin-
ear regression fusion approach. The i6mA-Fuse model 
integrates several encoding methods, including mono-
nucleotide binary, dinucleotide binary, k-space spec-
tral nucleotide, k-mer, and electron–ion interaction 
pseudo potential (EIIP), yielding AUC values of 0.982 
and 0.978, along with MCC scores of 0.869 and 0.858 

for Rosa chinensis and Fragaria vesca, respectively. 
Recently, Khanal et  al. [14] proposed i6mA-Stack, a 
stacking ensemble-based model incorporating multiple 
feature representations to improve predictive perfor-
mance across Rosaceae genomes. i6mA-Stack demon-
strated accuracy, achieving 94.09% for Fragaria vesca 
and 93.44% for Rosa chinensis, outperforming several 
existing 6  mA prediction tools. These models have 
shown strong performance; however, further improve-
ments can still be achieved, especially in addressing 
more complex data patterns. Additionally, the predic-
tion performance of these models is limited when non-
linearity exists in the dataset.

In this study, we propose Deep-N6mA, a novel deep 
learning-based framework for identifying N6-methyl-
adenine (6 mA) sites in DNA sequences. The proposed 
model integrates a DNN with optimally hybrid fea-
tures to enhance predictive accuracy. To construct the 
hybrid feature vector, multiple feature extraction tech-
niques are employed, including k-mer, Dinucleotide-
based Cross Covariance (DCC), Trinucleotide-based 
Auto Covariance (TAC), Pseudo Single Nucleotide 
Composition (PseSNC), Pseudo Dinucleotide Com-
position (PseDNC), and Pseudo Trinucleotide Com-
position (PseTNC). The hybrid approach incorporates 
diverse features but also introduces redundancy and 
noise. Feature selection techniques, such as Principal 
Component Analysis (PCA), mitigate these issues by 
retaining only the most relevant attributes, improving 
model performance. Finally, the classification frame-
work of Deep-N6mA is based on a multilayer Deep 
Neural Network (DNN) designed to achieve high preci-
sion in identifying 6  mA sites. Extensive experimental 
evaluations demonstrate that Deep-N6mA significantly 
outperforms conventional machine learning classifiers, 
including Support Vector Machine (SVM), k-nearest 
Neighbors (KNN), Naive Bayes (NB), and Random 
Forest (RF), using both benchmark datasets. Moreo-
ver, Deep-N6mA surpasses state-of-the-art models by 
achieving superior performance metrics and establish-
ing its robustness and reliability in 6  mA site predic-
tion—the design and implementation of the proposed 
model, as shown in Fig. 1.

The remainder of the paper is structured as follows: 
Sect.  "  Methods and Materials" explains the material 
and methods, including the benchmark dataset, feature 
extraction, and classification algorithms. The perfor-
mance evaluation metrics are presented in Sect.  " Per-
formance Evaluation". Sect.  "  Experimental Result 
and Analysis" discusses the experimental findings and 
discussions. Finally, Sect.  "  Conclusions" includes the 
paper’s conclusion and future work.
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Methods and materials
Benchmark dataset preparation
The development of a robust and efficient computational 
model necessitates the availability of a valid and reliable 
benchmark dataset. Such datasets are fundamental for 
training, validating, and testing machine learning algo-
rithms under standardized conditions, ensuring repro-
ducibility and comparability of results [14]. For this 
study, positive samples (6mAs) were sourced from the 
well-established MDR database for F. vesca and R. chin-
ensis [http://​mdR.​xiesl​ab.​org/] [15]. Each sequence con-
sisted of 41 base pairs, with an adenine "A" positioned 
centrally and a modification score of at least 30. To mini-
mize redundancy and ensure data diversity, we applied 
the CD-HIT tool with a similarity threshold 0.7, filtering 
out highly similar sequences [13]. A similar approach was 
followed for selecting negative samples. After this screen-
ing, we obtained 4,626 and 1,912 positive and negative 
samples for R. chinensis and F. vesca, respectively. Both 
datasets were curated to ensure balanced classes, reduced 
noise, and suitability for benchmarking machine learning 
models.

Furthermore, to evaluate the model’s generalizability 
and to reflect better real-world conditions, we perform 
independent validation, i.e., balance-independent vali-
dation. For balance-independent validation, 15% of the 
benchmark dataset was set aside. We used a balanced set 
of 694 (i.e., 347 positive and 347 negative samples) for the 
F. vesca dataset and 286 (i.e., 143 positive and 143 nega-
tive samples) for the R. chinensis dataset. Table 1 shows 

the overall statistics of the two benchmark datasets uti-
lized in the study.

Feature extraction methods
The feature extraction process enables biological 
sequences to evolve into numerical data for machine-
learning model integration. Bioinformatics specialists 
have developed multiple sequence transformation tech-
niques that convert biological nucleotide strings into 
mathematical models while maintaining their structural 
uniqueness. The bioinformatics algorithms transform 
DNA sequences into separate statistical forms without 
disrupting their original patterns and measurement val-
ues [16, 17]. In alignment with Chou’s 5-step guidelines, 
this study employs six feature extraction techniques: The 
PseKNC compound features PseSNC (Ƙ = 1), PseDNC 
(Ƙ = 2), and PseTNC (Ƙ = 3) together with k-mer series, 
Dinucleotide-based Cross Covariance (DCC) and Trinu-
cleotide-based Auto Covariance (TAC).

Fig. 1  Framework of the proposed model

Table 1  Statistical summary of the datasets for the two species

Genomes Samples Training Dataset Independent 
Dataset

F. vesca Positive 1966 347

Negative 1966 347

R. chinensis Positive 813 143

Negative 813 143

http://mdR.xieslab.org/
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The Pseudo K-Tuple Nucleotide Composition 
Sequences approach categorizes provided DNA 
sequences into a function vector while suppressing order 
information and suggesting a similarity between DNA 
samples [18]. Let consider a DNA sequence D with N 
number of nucleotide is represented as:

The number of nucleotides in a DNA sequence, or its 
dimension, is denoted by the letter N:

Various models have been suggested for DNA 
sequences while preserving their biological significance. 
[A, C, G, T] represents Adenine, Cytosine, Guanine, and 
Thymine, respectively, and Dh denotes a nucleotide at 
the hth , the position of a sequence. The general form for 
Pseudo K-Tuple Nucleotide Composition (PseKNC) [19] 
is as follows:

T seems to be the transposed vector, y is numeric, and 
φx , is the value of the DNA sequence’s function vector, 
calculated using Eq. (4).

where, θj represent the hth tier correlation factor or hth 
rank correlation factor that reflects the sequence order 
correlation in most contiguous K-tuple nucleotides. λ 
represents the total number correlation rank, and w rep-
resents the weight. In Eq. 4, the total correlation rank λ 
weight w was selected through empirical analysis, and 
the experimental result exhibits that w = 0.1 and λ = 1 
achieved high-performance results.

In this paper, we use the PseKNC technique to con-
vert the provided sequences into discrete feature vectors 
while maintaining the sequence order data. By designat-
ing different values to K (i.e., K = 1, 2, 3) in Eq. (3), three 
distinct modes of PseKNC were emanated, i.e., PseSNC 
(K = 1), PseDNC (K = 2), and PseTNC (K = 3), defined as 
follows:

(1)D = D1, D2, D3, . . . ,Dh, . . . ,DN

(2)Dh{T ,G,C ,A} (h = 1, 2, 3, . . . ,N )

(3)
[
ϕ1,ϕ2,ϕ3, . . . ,ϕx, . . . ,ϕy

]
T

(4)φx =






f
K−tuple
x

�4K

h=1 f
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+ �
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(5)PseSNC =

∣∣∣f 1−Tuple
j=1,...4D

f
−→(A,C ,G,T )

(6)PseDNC =

∣∣∣f 2−Tuple
j=1,...16D

f
−→(AA,CC ,GG,TT )

Furthermore, the k-mer method splits a DNA sequence 
into overlapping substrings of length k, known as k-mers. 
These k-mers act as key features for sequence analy-
sis. Overlapping k-mers of length k represent a DNA 
sequence of length L. The distinct k-mers (i.e., k = 2) and 
their frequencies are defined as:

Similarly, the dinucleotide-based Cross Covariance 
(DCC) method calculates the correlation between two 
physicochemical indices of dinucleotides (pairs of nucle-
otides) separated by a lag. For each dinucleotide pair 
separated by a lag, the covariance is determined based on 
properties like hydrophobicity or polarity. The resulting 
cross-covariance matrix is represented as:

where u1 and u2 are different physicochemical indices, 
L is the length of the nucleotide sequence, (Pu1(RiRi+1))

(Pu2(RiRi+1)) is the numerical value of the physicochemi-
cal index u1(u2) for the dinucleotide RiRi+1 at positioni
,Pu1(Pu2) , is the average value for physicochemical index 
u1(u2) along the whole sequence:

The dimension of the DCC feature vector is 
N ∗ (N − 1) ∗ LAG , where N  , is the number of phys-
icochemical indices and LAG is the maximum of lag 
(lag = 1, 2, . . . , LAG) . In this paper, we select LAG = 2 
and six physicochemical properties (i.e., N = 6), so the 
feature vector length is 60.

Finally, the Trinucleotide-based Auto Covariance 
(TAC) encoding measures the correlation of the same 
physicochemical index between trinucleotides separated 
by lag nucleic acids along the sequence and can be calcu-
lated as:

where u is a physicochemical index, L is the length of the 
nucleotide sequence, Pu(RiRi+1Ri+2) is the numerical 
value of the physicochemical index u for the trinucleotide 
RiRi+1Ri+2 , at position i , Pu is the average value for phys-
icochemical index u along the whole sequence:

(7)
PseTNC =

∣∣∣f 3−Tuple
j=1,...64D

f
−→(AAA,CCC ,GGG,TTT )

(8)f (t) =
N (t)

N
, t ∈ (AA,CC ,GG....TT )

(9)

DCC(u1,u2, lag) =

L−lag−1

i=1

(Pu1 (RiRi+1)− Pu1 )(Pu2 (Ri+lag Ri+lag+1)− Pu2 )

(L− lag − 1)

(10)Pu =

L−1∑

j=1

Pu(RjRj+1)

L− 1

(11)

TAC(lag ,u) =

L−lag−2∑

i=1

(Pu(RiRi+1Ri+2)− Pu)(Pu(Ri+lag Ri+lag+1Ri+lag+2)− Pu)

L− lag − 2
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The dimension of the TAC feature vector is N ∗ LAG , 
where N is the number of physicochemical indices, and 
LAG is the maximum of lag (lag = 1, 2, . . . , LAG) . In this 
paper, we select LAG = 2 and six physicochemical prop-
erties (i.e., N = 6), so the feature vector length is 12. The 
selected physiochemical properties (i.e., N = 6) for DCC 
and TAC are shift, roll, rise, slide, twist, and tilt.

Hybrids features
This study used six distinct feature extraction methods 
to encode DNA sequences into discrete feature vectors, 
as summarized in Table  2. All individual features were 
integrated to construct a comprehensive hybrid feature 
vector by capturing diverse sequence-derived attributes. 
Machine learning models leveraging hybrid features 
benefit from combining multiple extraction techniques, 
enhancing predictive performance by effectively cap-
turing complex data patterns. This approach remains a 
widely adopted strategy in bioinformatics and genomics 
for improving model interpretability and accuracy. 

Features optimization
Feature vectors often contain noisy, redundant, or irrel-
evant features that negatively impact a classifier’s perfor-
mance. To address this, we utilize Principal Component 
Analysis (PCA) for feature selection, a dimensional-
ity reduction method that processes multivariate data 
by computing covariance matrices and eigenvectors to 
reduce the feature vector’s dimensions. The primary goal 
of PCA is to preserve as much important data as possible 
while minimizing dimensionality [20]. Feature selection 
generally aims to reduce the number of input variables, 
decrease computational costs, and eliminate noisy fea-
tures. Statistically based feature selection methods eval-
uate the relationships between input variables and the 
target variable, selecting those with the most significant 

(12)Pu =

L−2∑

j=1

Pu(RjRj+1Rj+2)

L− 2

associations. PCA highlights variations within the data-
set, identifying key characteristics and making the data 
more interpretable. PCA works by computing the covari-
ance matrix C of the feature vector:

where xi ​ represents the ith feature vector, x , is the mean 
vector, and n is the total number of samples. Calculating 
the eigenvalues (λ) and corresponding eigenvectors (v) of 
C:

Eigenvectors with the largest eigenvalues represent the 
directions of maximum variance in the dataset. In this 
study, we consider the hybrid feature vector with dimen-
sions p× q , where p represents the number of features 
and q denotes the number of sequences. The dimensions 
for the hybrid feature vector are 176*3932 for the F. vesca 
dataset and 176*1626 for the R. chinensis dataset. Let k 
represent the number of desired features after selection. 
In our case, the desired feature dimensions are 86*3932 
for the F. vesca dataset and 68*1626 for the R. chinensis 
dataset. It is important to note that the value of k must 
be smaller than p (i.e.,k < p ) to ensure that the selected 
features form a subset of the original feature set.

Deep neural network architecture
DNN is a subfield of machine learning algorithms in arti-
ficial intelligence inspired by the human brain’s work-
ing mechanism and activities. A DNN model topology 
consists of an input layer, an output layer, and multiple 
hidden layers, as shown in Fig.  2. A Deep Neural Net-
work (DNN) model requires its hidden layers for learn-
ing processes, which substantially determine model 
performance outcomes. Model efficiency benefits from 
additional hidden layers, but these enhancements create 
higher computational demand, risks of overfitting, and, 
more significantly, expenses [21]. With DNN models, sci-
entists can automatically recognize important features 
from data sets without human handling by applying con-
ventional learning techniques [22]. DNN models deliver 
superior results to traditional methods in complex clas-
sification applications. DNN models successfully achieve 
results across the bioengineering domain [23], image and 
speech recognition categories [24], and natural language 
processing applications [25].

Model training
This study used two benchmark datasets to determine 
6 mA sites through a developed DNN modeling system. 

(13)C =
1

n− 1

n∑

i=1

(xi − x)(xi − x)T

(14)Cv = �v

Table 2  Dimension of feature vector with different values of K

Method Number 
of 
Features

K-mer 16

Dinucleotide-based Cross Covariance (DCC) 60

Trinucleotide-based Auto Covariance (TAC) 12

Pseudo Single Nucleotide Composition (PseSNC) 4

Pseudo Dinucleotide Composition (PseDNC) 18

Pseudo Trinucleotide Composition (PseTNC) 66

Hybrid Features 176
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The structure of this proposed model includes four hid-
den layers and an input and output layer. The predictive 
network uses each layer to process fundamental data ele-
ments through multiple computational neurons that gen-
erate outcomes.

Firstly, the given feature vector, i.e., X{xi, x2, x3, ....xn} 
was provided to the input layer. Each neuron in the input 
layer processes a feature xi and produces an output Y  by 
using a weight vector Wi , bias vector Bi , and activation 
function, fi as shown in Eq. 15. Secondly, the output of 
the input layer is given as input to the first hidden layer 
and produced a new output using Eq.  (15). Thirdly, the 
output of the first hidden layer is given as input to the 
second hidden layer and so forth [26], this process was 
continued until we reached the output layer. The output 
layer generated binary values, i.e., 0 and 1. In the case of 
the first layer, the value 0 denotes N6ma, and 1 denotes 
Non-N6ma.

In Eq. (15), each neuron in the model utilizes the Xavier 
function for weight matrix initialization to maintain uni-
form variance between layers. The model employs back-
propagation for weight matrix adjustment to reduce 
output prediction error variance with operational target 
values. Rectified Linear Unit (ReLU) activation func-
tions power both input and hidden layers to detect non-
linear patterns so that Softmax functions at the output 
layer create probability estimates from 0 to 1, which then 
determine data point classifications.

(15)Y = f (XWi + Bi)

Performance evaluation
To evaluate the performance of a machine learning algo-
rithm, performance evaluation parameters are commonly 
used to check the model’s validity and reliability. These 
parameters include Accuracy (ACC​), Specificity (SP), 
Sensitivity (SN), and Matthews Correlation Coefficient 
(MCC). Accuracy represents the model’s overall accuracy, 
describing the classifier’s correctness and general perfor-
mance. Specificity, also known as the true negative rate, 
measures the proportion of negative classes correctly 
identified by the classifier. Sensitivity is the true positive 
rate, and SN evaluates the proportion of positive classes 
correctly identified by the classifier. Matthews Correla-
tion Coefficient measures the quality of binary classifica-
tions; MCC provides a balanced evaluation that accounts 
for true positives, true negatives, false positives, and 
false negatives. This study uses these four performance 
metrics adopted in a series of publications [27–29]. The 
mathematical equations for each of these metrics are 
given below:

(16)ACC =
T+

+ T−

T+ + F+ + T−
+ F−

0 ≤ ACC ≤ 1

(17)SP =
T−

F+ + T−
0 ≤ SP ≤ 1

(18)SN =
T+

T+ + F−
0 ≤ SN ≤ 1

Fig. 2  DNN configuration topology, the circle represents neurons at each layer



Page 7 of 13Khan et al. BMC Medical Genomics           (2025) 18:58 	

where, 

•	 T+ True Positives
•	 F+ False Positives
•	 T− True Negatives
•	 F− False Negatives

Experimental result and analysis
The proposed model efficiency is evaluated and dis-
cussed in depth in this section. Several validation tests, 
including the K-fold validation test, can be utilized to 
assess the overall performance of the machine learning 
training algorithm in bioinformatics. The K-fold cross-
validation approach is a typical validation technique that 
uses evenly balanced findings. Consequently, a fivefold 
cross-validation test using benchmarking datasets was 
employed to examine the overall accuracy of the pro-
posed approach in this work.

Experimental setup
The system configuration is designed to support the effec-
tive implementation and execution of machine learn-
ing models. The software setup includes Python 3.6, the 
primary programming language because it comprehen-
sively supports machine learning libraries and data sci-
ence capabilities. Deep learning development and model 
training occur through TensorFlow 2.0 and PyTorch 1.4, 
though NumPy and Pandas perform numerical work 
and data handling tasks. With its broad functionality, 
Scikit-learn enables tasks ranging from classification to 
regression and data preprocessing. Through its package 
management and deployment capabilities, Anaconda3 
provides users with simplified administration, while 
Jupyter Notebook delivers an interactive development 
environment for code creation, prototyping, and visuali-
zations. The machine learning workflows are performed 
efficiently through an optimized hardware setup. The 

(19)

MCC =

(
T−

∗T+
)
−

(
F−

∗ F+
)

√(
f + + T+

)(
T+ + F−

)(
F+ + T−

)(
T− + F−

) − 1 ≤ MCC ≤ 1
system runs an HP Core i7 12th-generation high-speed 
processing unit with 8 GB RAM dedicated to managing 
data-intensive missions. Storage includes 256 GB SSD for 
quick performance boosts and 1  TB of storage capacity 
to handle large datasets and project files. The NVIDIA 
GeForce GTX 1060 GPU boosts deep learning perfor-
mance by expediting the operations of neural network 
training processes.

Nucleotide composition analysis
To analyze the differences in nucleotide composition 
between sequences containing 6  mA sites and those 
without, the Two Sample Logos [30, 31] method was 
employed to identify statistically significant variations. As 
illustrated in Fig. 3, adenosine and thymine were signifi-
cantly enriched in sequences with 6  mA sites (P < 0.05), 
while sequences lacking 6 mA sites showed a strong pref-
erence for cytosine and guanine (P < 0.05). These find-
ings support the feasibility of developing a computational 
approach for 6 mA site identification based on sequence 
characteristics.

Hyper parameters and optimizations
This section aims to find the best configuration val-
ues for the hyper-parameters used in the DNN topol-
ogy. To assess the DNN’s performance with different 
hyper-parameters, we used a grid search technique that 
tests various combinations of parameters. The analysis 
focused on hyper-parameters that significantly impact 
the DNN model’s performance. These parameters include 
the activation function, Learning Rate (LR), and number 
of iterations. The optimum configuration values for the 
hyper-parameters are obtained through the grid search, 
as shown in Table 3.

Firstly, we conducted a series of experiments to deter-
mine the effects of the activation function and learning 
rate. The results of the experiments are given in Table 4 
using ReLU and Tanh as the activation function and 
learning rates from 0.01 to 0.03. Table 4 shows that the 
highest accuracy, i.e., 97.70% and 95.75% on the F. vesca 

Fig. 3  Nucleotide composition differences between 6 mA and non-6 mA site-containing sequences, identified using the Two Sample Logos 
method
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and R. chinensis datasets, respectively, is obtained by the 
DNN classifier at a learning rate value of 0.01 using ReLU 
as an activation function.

Furthermore, we can observe from the table that the 
accuracy of the DNN model is continuously improved by 
decreasing the learning rate. However, after reducing the 
learning rate from 0.01, the DNN model accuracy could 
not significantly improve. Hence, we can conclude that 
the DNN model presented a high accuracy at a learning 
rate of 0.01 with the ReLU activation function. The opti-
mum values of the various hyper-parameters are shown 
in Table 3.

Secondly, we performed several experiments to ana-
lyze the performance of the DNN model from various 
training epochs at the model training stage. The results 
of the research are depicted in the Figs. 4 and 5. Accord-
ing to statistics, the number of errors created decreases 
as training epochs increase. Consider the F. vesca dataset 
Fig. 4, in which the DNN had 8.78 error losses at the start 
of the epochs and was regularly reduced to 0.09 as the 
epochs improved to 200.

Moreover, Fig. 5 shows the R. chinensis dataset, where 
the first iteration resulted in a cumulative error loss of 
4.8, which was reduced to 0.078 when the iteration was 
increased to 200. It can be concluded from the figures 
that 200 epochs are the optimum number of iterations 
as the error losses become stable at this number. Con-
sequently, a set of optimal configurations was obtained 
through this analysis, as presented in Table 3.

Performance analysis using sequence formulation 
techniques
In this section, we evaluate the performance of the pro-
posed model using various sequence formulation tech-
niques, as presented in Table  5 with the F. vesca and R. 
chinensis datasets. The results show that the proposed 
model performs best when using hybrid features com-
pared to other individual feature methods with the 
F. vesca dataset. Before feature selection, the model 
achieved a success rate of 95.87%, Sensitivity of 97.75%, 
Specificity of 90.86%, and MCC of 0.903%. To enhance 
the model’s performance, feature selection was applied 
to reduce the dimensionality of the hybrid feature space. 
After using this dimensionality reduction, the model’s 
performance significantly improved, with the accuracy 
increasing to 97.70%, Sensitivity 98.01%, Specificity 
97.30%, and MCC 0.951.

Similarly, we evaluate the performance of the proposed 
model using different sequence formulation methods on 
the R. chinensis dataset, as presented in Table  5. Incor-
porating hybrid features yielded the best results com-
pared to other individual feature methods. Initially, the 
proposed model achieved an accuracy rate of 91.75%, 
Sensitivity of 93.09%, Specificity of 90.33%, and MCC of 
0.891. To further enhance the performance of the pro-
posed model, the dimensionality of the hybrid feature 

Table 3  List of optimum hyper-parameters values of the 
proposed model

List of Parameters Optimal values

Seed 12345L

Learning rates 0.01

Activation Functions ReLU and SoftMax

Weight initialization function XAVIER function

Regularization l2 0.001

Dropout 0.25

Number of Neurons at hidden layers 86–70-45–21-6–2, 
68,52,18,12,4,2

Number of hidden layers 4

Updater ADAGRAD function

Training Epoch 200

Momentum 0.9

Optimizer SGD Method

Table 4  Impact of different learning rates and activation 
function ReLU on the performance of the DNN model using a 
fivefold model

Species LR ReLU ACC (%) Tanh ACC (%)

F. vesca 0.01 97.70 94.91

0.02 97.34 94.34

0.03 96.87 93.67

R. chinensis 0.01 95.75 92.65

0.02 95.05 91.17

0.03 95.53 90.94

Fig. 4  Performance on the F. vesca dataset using the ReLU activation 
functions and 5-Fold cross-validations
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vector is reduced. This dimensionality reduction signifi-
cantly improved the model’s performance, with accuracy 
rising to 95.75%, Sensitivity increasing to 96.45%, Speci-
ficity improving to 94.55%, and MCC reaching 0.921. The 
experimental results show that optimal hybrid features 
significantly boost the proposed model’s performance, 
making it more effective in identifying 6 mA sites using 
both datasets.

Performance comparison of different classifiers
In this section, the performance of the proposed model is 
compared with widely used machine learning algorithms 
using optimally selected hybrid features. For evaluation, 

classifiers including Random Forest (RF), Support Vec-
tor Machine (SVM), Naïve Bayes (NB), and K-Nearest 
Neighbor (KNN) were employed. The performance of 
various classifiers on the F. vesca and R. chinensis datasets 
was compared to evaluate their effectiveness. A perfor-
mance comparison of different ML algorithms on both 
datasets is provided in Table 6.

As shown in Table 6 for the F. vesca dataset, the NB, RF, 
SVM, and KNN models achieved ACC scores of 83.40%, 
84.10%, 85.94%, and 89.69%, respectively, with MCC 
values ranging from 0.722 to 0.753. In contrast, the pro-
posed Deep-N6mA model demonstrated superior per-
formance, achieving an ACC of 97.70%, SN of 98.01%, SP 

Fig. 5  Performance on the R. chinensis dataset using the ReLU activation functions and 5-Fold cross-validations

Table 5  Performance comparison using sequence formulation techniques using F. vesca and R. chinensis 

Species Methods ACC (%) SN (%) SP (%) MCC

F. vesca TAC​ 90.52 93.32 83.21 0.811

NAC 85.89 93.87 87.92 0.792

Kmer 85.90 88.45 80.13 0.786

PseSNC 80.13 83.34 79.93 0.774

PseDNC 90.95 92.65 87.83 0.788

PseTNC 89.32 91.34 85.54 0.808

Hybrid feature (without feature selection) 95.87 97.75 90.86 0.903

Hybrid feature (with feature selection) 97.70 98.01 97.30 0.951

R. chinensis TAC​ 88.52 90.14 83.21 0.773

NAC 85.89 75.32 87.32 0.736

Kmer 85.90 80.45 86.43 0.750

PseSNC 79.13 81.34 76.63 0.721

PseDNC 88.95 89.65 81.83 0.792

PseTNC 84.98 83.56 85.99 0.712

Hybrid feature (without feature selection) 91.75 93.09 90.33 0.891

Hybrid feature (with feature selection) 95.75 96.45 94.55 0.921
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of 97.30%, and MCC of 0.951, significantly outperform-
ing all other classifiers. Similarly, as presented in Table 6, 
the SVM, RF, NB, and KNN models achieved ACC scores 
of 78.57%, 81.33%, 81.89%, and 84.43%, respectively, with 
MCC values ranging from 0.677 to 0.727. The proposed 
Deep-N6mA model demonstrated superior performance, 
achieving an ACC of 95.75%, SN of 96.45%, SP of 94.55%, 
and MCC of 0.921, highlighting its enhanced predictive 
capability over conventional classifiers.

To analyze further, we evaluate the proposed mod-
el’s performance using the Area Under the ROC Curve 

(AUC), as shown in Figs. 6 and 7. AUC is a widely used 
metric for assessing the performance of binary classifiers, 
with values ranging from 0 to 1. A higher AUC indicates 
better predictive capability, with values closer to 1 repre-
senting superior performance than those closer to 0 [32]. 
The AUC analysis plots the False Positive Rate (FPR) on 
the x-axis and the True Positive Rate (TPR) on the y-axis.

Figures 6 and 7 show that the proposed model achieved 
an AUC of 0.982 on the F. vesca dataset and 0.964 on 
the R. chinensis dataset, indicating excellent perfor-
mance compared with widely used ML algorithms. The 
AUC curve visually demonstrates the model’s perfor-
mance, with the Area under the curve increasing as the 
model’s ability to distinguish between positive and nega-
tive classes improves. A shrinkage in the Area under 
the curve would suggest a decline in the model’s effec-
tiveness, emphasizing that the proposed model exhibits 
robust predictive power in both datasets.

Comparison with existing predictors
In this section, the performance of the proposed Deep-
N6mA model was evaluated against existing predictors, 
i.e., i6mA-Fuse [13] and i6mA-stack [14], on the F. vesca 
and R. chinensis datasets. Table  7 presents the perfor-
mance comparison of the proposed Deep-N6mA model 
with existing predictors.

Table 6  Performance comparison of different classifiers using 
the F. vesca and R. chinensis datasets

Species Methods ACC (%) SN (%) SP (%) MCC

F. vesca NB 83.40 88.81 78.41 0.722

RF 84.10 81.51 88.28 0.734

SVM 85.94 81.24 86.74 0.735

KNN 89.69 92.22 85.65 0.753

Deep-N6mA 97.70 98.01 97.30 0.951

R. chinensis SVM 78.57 78.03 83.92 0.677

RF 81.33 81.51 76.82 0.705

NB 81.89 78.21 87.24 0.727

KNN 84.43 91.12 83.25 0.714

Deep-N6mA 95.75 96.45 94.55 0.921

Fig. 6  AUC comparison with different ML algorithms using the F. vesca dataset
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From Table  7, the i6mA-Fuse [13] model achieved an 
accuracy (ACC) of 93.40%, Sensitivity (SN) of 90.80%, 
Specificity (SP) of 95.70%, and a Matthews correlation 
coefficient (MCC) of 0.873 on the F. vesca dataset. The 
i6mA-Stack [14] model yielded an ACC of 93.76%, SN 
of 93.25%, SP of 94.30%, and MCC of 0.875. In compari-
son, the proposed Deep-N6mA model significantly out-
performed these existing methods, achieving an ACC of 
97.70%, SN of 98.01%, SP of 97.30%, and MCC of 0.951. 
Similarly, on the R. chinensis dataset, the i6mA-Fuse 
[13] model achieved an ACC of 91.60% and an MCC of 
0.851, while the i6mA-Stack [14] model scored 90.79% 
ACC and MCC of 0.815. In contrast, the Deep-N6mA 
model outperformed them with an ACC of 95.75% and 

an MCC of 0.921. The findings underscore the effective-
ness of the proposed Deep-N6mA model, which con-
sistently outperforms existing models on both datasets. 
This reinforces its outstanding capability in identifying 
N6-methyladenine modifications in DNA sequences. 
Notably, the Deep-N6mA model achieves the highest 
performance, surpassing the average success rate of the 
benchmark methods by 4.12% and 4.55%, respectively.

Performance comparison on an independent dataset
The accurate measure of a prediction model’s generaliza-
tion is its performance on unseen data. To evaluate the 
robustness of our developed model, we tested it on an 
independent dataset, using 80% of the data for training 

Fig. 7  AUC comparison with different ML algorithms using the R. chinensis dataset

Table 7  The proposed predictor is compared to existing 
predictors

Species Model ACC (%) SN (%) SP (%) MCC

F. vesca I6mA-Fuse [13] 93.40 90.80 95.7 0.873

I6mA-stack [14] 93.76 93.25 94.30 0.875

Proposed Deep-N6mA 97.70 98.01 97.30 0.951

R. chinensis I6mA-Fuse [13] 91.60 88.10 95.0 0.851

I6mA-stack [14] 90.79 90.00 91.61 0.815

Proposed Deep-N6mA 95.75 96.45 94.55 0.921

Table 8  The performances of the proposed model on the 
independent datasets

Species Methods ACC (%) SP (%) SN (%) MCC

F. vesca i6mA-Fuse [13] 93.70 94.80 92.80 0.869

6 mA-stack [14] 95.10 97.11 91.06 0.880

Proposed Deep-N6mA 95.65 97.72 93.61 0.892

R. chinensis i6mA-Fuse [13] 92.90 94.30 91.5 0.858

6 mA-stack [14] 93.44 92.81 94.12 0.868

Proposed Deep-N6mA 94.23 95.32 93.14 0.876
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and 20% for testing. The performance comparison of the 
proposed Deep-N6mA model on the independent data-
sets is shown in Table 8.

From Table  8, on the F. vesca dataset, the i6mA-Fuse 
[13] model achieved an ACC of 93.7%, with an MCC of 
0.869. The 6 mA-Stack [14] model outperformed i6mA-
Fuse by achieving an ACC of 95.10%, with an MCC 
of 0.880. However, the proposed Deep-N6mA model 
achieved superior performance, with an ACC of 95.65%, 
an SP of 97.72%, an SN of 93.61%, and an MCC of 0.892. 
Similarly, on the R. chinensis dataset, the i6mA-Fuse [13] 
achieved an ACC of 92.9%, with SP of 94.3% and SN of 
91.5%, whereas the 6  mA-Stack [14] model achieved an 
ACC of 93.44%, an SP of 92.81%, and an SN of 94.12%. 
However, the proposed Deep-N6mA model achieved 
superior performance: ACC of 94.23%, SP of 95.32%, SN 
of 93.14%, and an MCC of 0.876. Hence, evaluating the 
proposed Deep-N6mA on independent datasets demon-
strates its superior performance in accurately predicting 
N6-methyladenine (6  mA) sites, improving the average 
success rate of the benchmark methods as high as 1.25% 
and 1.06%, respectively.

Conclusions
N6-methyladenine (6  mA) is an essential DNA modi-
fication, playing a pivotal role in regulating key biologi-
cal processes such as gene expression, DNA replication, 
and repair mechanisms. Identifying 6  mA sites within 
DNA sequences is critical for understanding epigenetic 
regulation and its implications in various organisms. This 
study introduced Deep-N6mA, a novel computational 
framework based on a Deep Neural Network (DNN). 
The proposed model employs a hybrid feature extraction 
approach, integrating multiple sequence-based features 
to capture intricate patterns within DNA sequences. Rig-
orous evaluations were conducted using two datasets, 
F. vesca and R. chinensis, with fivefold cross-validation 
to ensure robust performance assessment. The Deep-
N6mA model achieved remarkable outcomes, with accu-
racy prediction techniques by 3.94% on the R. chinensis 
dataset and 4.64% on the F. vesca dataset, indicating its 
superior effectiveness compared to prior methods. Fur-
thermore, the proposed model demonstrated superior 
Sensitivity, Specificity, and MCC values, underscoring 
its ability to accurately and reliably identify 6  mA sites. 
Compared to earlier models, the Deep-N6mA approach 
excels in predictive accuracy and generalizability across 
species, making it a significant advancement in compu-
tational biology. This study highlights the effectiveness of 
leveraging advanced deep learning techniques over clas-
sical machine learning models for addressing complex 
biological problems.

Future work will focus on expanding the datasets to 
cover a broader range of species, further optimizing the 
model architecture, and conducting experimental valida-
tions to enhance reliability. These steps are anticipated 
to establish Deep-N6mA as a robust and scalable solu-
tion for 6  mA site prediction, paving the way for more 
advanced epigenetic studies [33–35].
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