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Introduction
Peroxisomes are organelles in the eukaryotic cells that 
perform β-oxidation of fatty acids. Their cellular pres-
ence and performance level are influenced by metabolism 
and physiological conditions, with the highest concentra-
tions in liver and kidney tubular cells [1]. Fatty acid oxi-
dation is carried out by mitochondria and peroxisomes. 
Short-, medium-, and long-chain fatty acids oxidation 
occurs in the mitochondria organelle, whereas peroxi-
somes are responsible for the oxidation of very long-
chain fatty acids [2, 3]. These two organelles play a crucial 
role in detoxifying reactive oxygen species (ROS) as well 
as xenobiotics [4, 5].

The disruption of peroxisome biogenesis or its mainte-
nance leads to peroxisome biogenesis disorders (PBDs). 
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Abstract
Peroxisomal disorders are a group of hereditary metabolic disorders that happen when peroxisomes are defective. 
Around 80% of individuals affected by peroxisomal disorders are classified within the spectrum of Zellweger 
syndromes with autosomal recessive inheritance pattern that results from mutations in one of the 13 PEX genes. 
Clinical exome sequencing plays a vital role in the diagnosis where the symptoms are atypical. In the current study, 
we used this technique to find the underlying genetic cause in 14 Iranian patients with peroxisomal disorders. 
PEX1 variants were detected in five patients. PEX2, PEX5, PEX6 and PEX7 variants were detected in three, one, 
one, and two cases, respectively. Finally, ACOX1 variants were identified in two cases. All cases except two cases 
were homozygote for the suspected variants in Zellweger syndrome-related genes. Two cases were compound 
heterozygote for variants in the PEX1 gene. In total, two novel variants were identified, including c.313 C > T 
(p.Gln105*) and c.961 A > T (p.Ile321Phe) in the PEX1 and ACOX1 genes, respectively. The present research expands 
the range of genetic variations observed in Iranian individuals diagnosed with various forms of Zellweger spectrum 
disorders.
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Around 80% of individuals affected by PBD are classi-
fied within the spectrum of Zellweger syndromes (ZS) 
with autosomal recessive inheritance pattern that results 
from mutations in one of the 13 PEX genes [6–8]. ZS 
encompasses three distinct phenotypes: severe ZS, neo-
natal adrenoleukodystrophy (NALD), and the least severe 
infantile Refsum disease (IRD). These phenotypes were 
identified before their biochemical and molecular mech-
anisms were understood [9]. The clinical manifestations 
of ZS encompass hepatic dysfunction, developmental 
delays, various neurological disorders, adrenal cortical 
insufficiency, and impairments in both hearing and vision 
[10].

Due to overlapping symptoms in Zellweger disor-
ders, numerous studies indicate that accurate diagno-
sis requires thorough clinical examination, laboratory 
testing, and multi-disciplinary collaboration [11–13]. 
Clinical exome sequencing plays a vital role in the diag-
nosis where the symptoms are atypical [11]. The present 
research expands the range of genetic variations observed 
in Iranian individuals diagnosed with various forms of 
Zellweger spectrum disorders.

Case presentation
This study was performed on 14 Iranian cases of Zell-
weger spectrum disorders. Cases were assessed in the 
Comprehensive Genomic Center, Tehran, Iran during 
2018–2024. Genetic counseling and molecular diag-
nosis were performed in this center. Informed consent 
forms were signed by legal representatives of patients. 
All methods were carried out in accordance with relevant 
guidelines and regulations. All experimental protocols 
were approved by ethical committee of Shahid Beheshti 
University of Medical Sciences.

Molecular diagnosis
Genomic DNA was obtained from the peripheral blood 
of patients using the standard salting-out procedure. 
The concentration and quality of DNA were evaluated 
using a NanoDrop 1000 (Thermo Fisher Scientific, USA). 
Genomic DNA of probands was subjected to whole 
exome sequencing (WES) using an Illumina HiSeq4000 
system with paired-end reads of 101  bp and 100X cov-
erage. Exonic and adjoining exon-intron border regions 
were enriched using SureSelectXT2 V6 kits. After exclu-
sion of low-quality reads, the reads were mapped to the 
human genome reference (hg37 build) using the Burrows-
Wheeler Aligner. Next, Sequence Alignment/Map (SAM) 
tools were used for detection and removal of duplicates. 
Then, recalibration and single nucleotide polymorphism/
indel calling were conducted. Variant calling and filtering 
were done using the Genome Analysis Toolkit.

Variant prioritization strategy involved a multi-step 
filtering process. Initially, we filtered variants based on 

quality metrics, including read depth, genotype quality, 
and allele frequency in public databases (e.g., gnomAD, 
dbSNP). We then prioritized rare variants (MAF < 1%) 
and focused on those predicted to be deleterious by 
in silico tools (e.g., SIFT, PolyPhen-2, and CADD). We 
applied a recessive inheritance model to identify poten-
tial disease-causing pairs. Parental consanguinity was 
also evaluated. In fact, all variants were assessed accord-
ing to the accessible data from these sources: databases 
(including HGMD, ClinVar, LSDBs, NHLBI Exome 
Sequencing Project, 1000 Genomes, and dbSNP), pub-
lished articles, clinical correlation, segregation analyses, 
functional assessments, and the predicted functional or 
splicing influence based on evolutionary conservation 
analyses and in silico tools (AlignGVGD, MAPP, Muta-
tionTaster, PolyPhen-2, SIFT, and SNAP).

Variants were classified according to the criteria in 
the ACMG guidelines into five tiers: pathogenic, likely 
pathogenic, uncertain significance (VUS), likely benign 
and benign [14].

The identified variants were verified by Sanger 
sequencing in the probands. Segregation analysis was 
performed in the families of cases 1, 2, 3, 4, 6, 8, 9 and 
12. In other cases, family members were not available for 
segregation studies.

Results
Table  1 shows the summary of clinical and molecular 
data of enrolled subjects, including eight females and 
six males. The clinical symptoms and signs were viable 
among patients with most of cases presenting hypotonia 
and developmental delay. Seven patients had hearing loss. 
Eight patients were born to consanguine parents. PEX1 
variants were detected in five patients. PEX2, PEX5, 
PEX6 and PEX7 variants were detected in three, one, one, 
and two cases, respectively. Finally, ACOX1 variants were 
identified in two cases (Fig. 1).

All cases except two cases (cases 3 and 4) were homozy-
gote for the suspected variants in ZS-related genes. Case 
3 was compound heterozygote for two pathogenic vari-
ants in the PEX1 gene, namely c.2528G > A (p.Gly843Asp) 
and c.1136_1140del (p.Glu379Glyfs*12). Similarly, case 
4 was compound heterozygote for two PEX1 variants 
(c.2528G > A [p.Gly843Asp] and c.313 C > T [p.Gln105*]), 
which were classified as pathogenic and likely pathogenic 
variants, respectively. Figure  2 shows Sanger chromato-
gram of this case.

In total, two novel variants were identified, including 
c.313 C > T (p.Gln105*) and c.961 A > T (p.Ile321Phe) in 
the PEX1 and ACOX1 genes, respectively. We explored 
several databases such as DANN, and BayesDel to assess 
the functional consequences of novel variants. DANN 
is a functional prediction score based on a deep neural 
network. The score can range from 0 to 1, when higher 



Page 6 of 9Khalilian et al. BMC Medical Genomics           (2025) 18:67 

values are more likely of being deleterious. Accord-
ing to this database both c.313  C > T (p.Gln105*) and 
c.961  A > T (p.Ile321Phe) variants are deleterious with 
scores of 1 and 0.99, respectively.

BayesDel is a functional prediction deleteriousness 
meta-score. The range of the score is from − 1.29334 to 
0.75731. The higher the score, the more likely the variant 
is pathogenic. According to this database the c.313 C > T 
(p.Gln105*) variant is deleterious (strong) (score: 0.66). 
Moreover, the c.961  A > T (p.Ile321Phe) variant is also 
deleterious (supporting) (score: 0.24).

Discussion
Identification of spectrum of genetic mutations in ZS 
in each population has significance in the genetic coun-
seling and prenatal diagnosis. The current study aimed 
to show the spectrum of PEX mutations among Iranian 
patients with this type of metabolic disorders. PEX1 
gene included the highest rate of mutations in this study, 
being mutated in five out of 14 patients. Notably, the 
c.2528G > A (p.Gly843Asp) within this gene was detected 
in three unrelated patients in the heterozygous state. This 
variant was also reported in the homozygous state in 
two sibling (non-identical twins) born to a consanguin-
eous Iranian parent [27]. The patients had the common 
features of ZS including dysmorphic face and intellec-
tual disability, but no hearing loss was reported in these 
patients [27]. The c.2528G > A variant was reported to be 
the most common mutation in PEX1, by far. It changes 
the glycine located in the second ATP-binding domain 
into an aspartic acid, thus reducing the binding between 
PEX1 and PEX6 [28]. The biological impact of this muta-
tion was found relatively mild and cells of patients with 

this mutation often exhibit peroxisomal mosaicism when 
cultured at 37  °C [29]. Notably, case 3 in this study had 
c.2528G > A variant together with a frameshift variant 
(p.Glu379Glyfs*12); and presented with hearing loss. 
Taken together, this mutation seems to be widespread 
among Iranian patients with ZS. However, the related 
phenotypes with this mutation should be assessed in 
future studies. Since p.Gly843Asp is a misfolded protein 
responsive to chaperone therapy [28], identification of 
the relative frequency of this mutation among Iranian 
patients would facilitate establishment of personalized 
treatment modalities among these patients.

Other studies among Iranian patients reported a homo-
zygous VUS in the PEX6 (c.1992G > C [p. Glu664Asp]) 
[30], c.743_744delTCinsA mutation in the PEX11β [31], 
and a homozygous missense mutation in the PEX12 
gene (c.541T > G [p.Tyr181Asp]) [32]. Moreover, the 
compound heterozygous mutations, p.Arg949Trp and 
p.Gly970Ala, were identified in another Iranian patient 
with ZS [33]. The p.Arg949Trp occurred in a conserved 
arginine residue, thus the mutation hampers the sub-
strate processing of the PEX1/PEX6 complex. The 
p.Gly970Ala may also preclude appropriate interaction of 
PEX1 and PEX6 proteins [33].

Different PEX mutations have been reported in other 
countries. For instance, a study in the USA reported 
a homozygous variant in the PEX6 (c.1409G > C 
[p.Gly470Ala]) [34]. Also, two novel PEX6 intronic vari-
ants, c.315G > A and c.2095–3 T > G, were found in a 
Chinese neonate. The c.2095–3 T > G variant has led to 
abnormal mRNA splicing [35]. Moreover, another study 
has reported a recurrent p.Arg294Trp variant in the 
PEX13 gene in three out of five families with ZS. These 

Fig. 1  Distribution of identified variants within genes
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Fig. 2  Sanger chromatogram of case 4. According to the result, this compound heterozygous mutation is confirmed in this patient
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patients had different clinical manifestations, such as 
hypotonia, developmental regression, hearing/vision 
defects, progressive spasticity and brain leukodystrophy 
[36]. In brief, the spectrum of genetic variants leading to 
Zellweger spectrum disorders in different ethnic groups 
is quite wide.

In brief, we provided an overview of PEX mutations 
among Iranian patients. We also identified two novel 
variants, namely c.313 C > T (p.Gln105*) and c.961 A > T 
(p.Ile321Phe) in the PEX1 and ACOX1 genes, respec-
tively. While the segregation of the former variant was 
confirmed in the family, family members were not avail-
able for segregation studies of the latter variant. This 
information would pave the way for proper genetic coun-
seling of the affected families. Moreover, the occurrence 
of more than 42% of affected patients in non-consanguin-
eous families implies high prevalence of PEX mutations 
among Iranian population. This should be considered in 
pre-marital genetic counseling.

In total, the spectrum of PEX mutations among Iranian 
patients is not fully understood, necessitating further 
studies in this field. Moreover, assessment of the func-
tional consequences of novel variants and recognition of 
their responsiveness to chaperon therapy facilitate estab-
lishment of personalized treatment modalities for ZS.
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