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Abstract 

Background  Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has varied presentations from asymptomatic to death. Efforts to identify factors responsible for differ-
ential COVID-19 severity include but are not limited to genome wide association studies (GWAS) and transcriptomic 
analysis. More recently, variability in host epigenomic profiles have garnered attention, providing links to disease 
severity. However, whole epigenome analysis of the respiratory tract, the target tissue of SARS-CoV-2, remains 
ill-defined.

Results  We interrogated the nasal methylome to identify pathophysiologic drivers in COVID-19 severity 
through whole genome bisulfite sequencing (WGBS) of nasal samples from COVID-19 positive individuals with severe 
and mild presentation of disease. We noted differential DNA methylation in intergenic regions and low methylated 
regions (LMRs), demonstrating the importance of distal regulatory elements in gene regulation in COVID-19 illness. 
Additionally, we demonstrated differential methylation of pathways implicated in immune cell recruitment and func-
tion, and the inflammatory response. We found significant hypermethylation of the FUT4 promoter implicating 
impaired neutrophil adhesion in severe disease. We also identified hypermethylation of ELF5 binding sites suggesting 
downregulation of ELF5 targets in the nasal cavity as a factor in COVID-19 phenotypic variability.

Conclusions  This study demonstrated DNA methylation as a marker of the immune response to SARS-CoV-2 infec-
tion, with enhancer-like elements playing significant roles. It is difficult to discern whether this differential methylation 
is a predisposing factor to severe COVID-19, or if methylation differences occur in response to disease severity. These 
differences in the nasal methylome may contribute to disease severity, or conversely, the nasal immune system may 
respond to severe infection through differential immune cell recruitment and immune function, and through differ-
ential regulation of the inflammatory response.
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Background
Since its emergence in December 2019, severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
resulted in nearly 775 million cases of coronavirus dis-
ease 2019 (COVID-19) and over 7 million deaths world-
wide [1]. This placed COVID-19 as the third leading 
cause of death in the United States in 2021 [2]. The symp-
tomatology of this disease is extremely variable, ranging 
from asymptomatic infection to mild respiratory com-
plaints, to cardiopulmonary failure and death [3]. Mor-
tality associated with COVID-19 has most commonly 
been attributed to septic shock and multiorgan failure, 
often secondary to suppurative pneumonia [4]. These 
wide-reaching and catastrophic outcomes associated 
with COVID-19 led to global efforts to define the patho-
physiology of this disease in hopes of identifying thera-
peutic targets and pharmacologic interventions to reduce 
morbidity and mortality. However, many of the causative 
mechanisms that determine COVID-19 severity remain 
elusive.

Proposed mechanisms and associations of severe 
SARS-CoV-2 infections, evaluated mainly through tran-
scriptomic and proteomic analyses, include increased 
levels of proinflammatory cytokines [5–7], modulations 
of immune cells including leukocyte exhaustion with 
depletion of T lymphocytes in particular [5, 8–10], and 
increased binding affinity of the SARS-CoV-2 spike pro-
tein to the host angiotensin 2 (ACE 2) receptor [11–13]. 
Large genome-wide association studies (GWAS) of com-
mon and rare variants have provided additional insight 
into the biological underpinnings of infection severity, 
identifying single nucleotide variants (SNV) in or near 
genes involved in the innate immune response to viral 
SARS-CoV-2 infections, type I interferon (IFN) immu-
nity, blood group phenotype, and viral entry [14–16].

Recently, interindividual differences in epigenetic 
footprints have been postulated as key drivers in some 
of the proposed pathways and determinants of differen-
tial clinical outcomes between patients [17–22]. DNA 
methylation, the most studied epigenetic mark, is cell-
specific and occurs on cytosine residues in the context 
of cytosine-guanine dinucleotides (CpG). Generally, 
methylation (i.e., hypermethylation) of a gene promoter 
induces a closed chromatin configuration, such that 
methylation serves as a silencer of gene expression [23]. 
Conversely, lack of methylation (i.e., hypomethylation) is 
commonly associated with activation of gene transcrip-
tion [24]. Though DNA methylation can be dynamic in 
response to environmental stimuli [25, 26], methylation 
patterns are typically propagated across cell divisions 
such that changes in methylation state can result in long-
lasting effects on gene expression [23, 27, 28]. In fact, it 
was recently demonstrated that individuals previously 

hospitalized with COVID-19 exhibit changes in their 
methylomes that persist for at least one year after hospi-
tal discharge [29].

In the examination of DNA methylation during 
COVID-19 pathogenesis, the most highly considered 
contribution to disease pathogenesis has been related to 
methylation status of the ACE2 promoter region, with 
relative hypomethylation (i.e., increased gene expression) 
noted in individuals with severe disease as compared to 
uninfected controls [30]. Other associations suggesting 
methylation as a causative factor in COVID-19 sever-
ity include differentially methylated regions (DMRs) of 
interferon-related genes and interferon-effector genes in 
severe COVID-19 cases which correlate with observa-
tions of decreased transcriptional products of antiviral 
IFN genes [30, 31]. Further, hypomethylation of other 
inflammatory regulators leading to elevated cytokine/
chemokine gene expression has been described [30]. 
Taken together, these findings indicate that differential 
methylation patterns impacting host-viral interactions 
may predispose certain individuals to more severe infec-
tion. Additionally, like other RNA viruses, SARS-CoV-2 
may induce innate immune dysfunction thereby leading 
to impairment in host immune defenses.

In this study, we apply whole-genome bisulfite sequenc-
ing (WGBS) to define the global epigenomic landscape 
of the nasal mucosa as it relates to the host response in 
severe versus mild cases of SARS-CoV-2 infection uti-
lizing biospecimens collected early in the COVID-19 
pandemic, representing primary infections prior to the 
advent of the vaccination initiative. We demonstrate 
supporting data of differential antiviral responses and 
immune cell populations between disease severities. We 
highlight the importance and interplay between multi-
ple inflammatory mechanisms, including the phospho-
inositide 3‐kinase/serine‐threonine kinase (PI3K/Akt) 
pathway, Notch, and nuclear factor kappa B (NF-κB) 
signaling. We identify differential methylation of FUT4 
– an immature neutrophil marker and adhesion mole-
cule— as putative factors in severe COVID-19 pathogen-
esis. Finally, we expand the understanding of the roles of 
ELF4 and ELF5 in controlling transcriptional regulation 
as it relates to COVID-19 severity.

Results
Characterization of the regulatory genomic landscape 
in nasal mucosa by WGBS
Nasal samples from 61 subjects positive for the alpha 
or beta variants of SARS-CoV-2 presenting to a single 
center at the time of symptomatic presentation concern-
ing for COVID-19 (4 severe and 57 mild) from April 8, 
2020, through June 8, 2020, were included in the study. 
Demographic features of hospitalized (defined as severe; 
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n = 4) versus non-hospitalized (defined as mild; n = 57) 
patients are summarized in Table  1. Of note, all hospi-
talized subjects required intensive care unit admission. 
Three of the four hospitalized subjects required supple-
mental oxygen support with two of the four hospitalized 
subjects requiring intubation and mechanical ventilation.

WGBS data was generated at high depth, identifying on 
average 13.2 million CpGs per sample each at > 10X cov-
erage. Hierarchical clustering was performed on the top 
25th percentile most variably methylated regions show-
ing no clustering structure for confounders such as self-
reported race and gender (Supplemental Fig. 1). Using the 
combined WGBS datasets of severe and mild COVID-19 
cases, we characterized active regulatory regions in nasal 
mucosa. Specifically, we performed methylation segmen-
tations to extract unmethylated regions (UMR) and low 
methylated regions (LMR) which are known to corre-
late with promoter- and enhancer-like elements, respec-
tively [25]. We identified 19,187 UMRs (average 2,366 
bp) with methylation across the regions being < 5% and 
containing on average 117 CpGs per region. LMRs were, 
as expected, more abundant identifying 43,924 regions 
with an intermediate methylation status (5–50%) and 
more CpG-sparse (8 CpGs per region, average 642 bp). 
We annotated these regions based on publicly available 
reference maps of regulatory DNA based on DNase I 
hypersensitive sites (DHSs) across 16 different cell types 
[32] and found 99% and 98% of UMRs and LMRs, respec-
tively, overlapped a DHS. Of these annotated regions, the 
vast majority (98%) of the UMRs overlapped with a DHS 
detected in multiple cell types. In contrast, LMRs were 
shown to represent to a larger extent cell-specific regula-
tory DNA with 27% of LMRs (N = 11,976) overlapping a 
DHS unique to a specific cell type. Of these 11,976 cell-
specific LMRs from our aggregated COVID-19 positive 

samples (severe and mild disease), we noted 11% and 20% 
being lymphoid and myeloid regulatory elements, respec-
tively (Supplemental Table 1).

To better characterize the cell types in which differ-
ential methylation may be associated with COVID-19 
severity, we examined the UMRs and LMRs of severe and 
mild WGBS datasets separately, as well as WGBS data 
from nasal samples derived from non-infected individu-
als. While there were not substantial differences in the 
cell-type proportions of identified DHSs between severe 
and mild cases of COVID-19 (Supplemental Table  2), 
there were notable differences between COVID-19 posi-
tive (combined severe and mild cases) and COVID-19 
negative individuals, particularly in the case of LMRs 
(Fig. 1, Supplemental Table 1). Most notably, when com-
paring COVID-19 positive versus negative individuals, 
we found that 46% compared to 25% of LMRs overlapped 
with immune cell regulatory elements (X2 = 5189.6, df = 1, 
p < 2.2 × 10–16). More specifically, in COVID-19 positive 
compared to COVID-19 negative individuals, 24% versus 
15% of LMRs overlapped with lymphoid cell regulatory 
elements (X2 = 1264.0, df = 1, p < 2.2 × 10–16), and 28% 
versus 12% of LMRs overlapped with myeloid cell regu-
latory elements (X2 = 4557.1, df = 1, p < 2.2 × 10–16). While 
the same trend was seen for UMRs, the magnitude of 
effect was strikingly stronger when contrasting LMRs in 
COVID-19 positive versus COVID-19 negative individu-
als (Fig. 1).

When narrowing our focus to only those UMRs and 
LMRs appreciated for a single cell type, we noted similar 
findings. Our comparisons of cell-type specific UMRs and 
LMRs were relatively similar between those with severe and 
mild disease (Supplemental Table 2). However, when com-
paring the cell-specific UMRs and LMRs in SARS-CoV-2 
positive as compared to negative individuals, substantial 
differences were appreciated in LMR distribution. Specifi-
cally, when examining cell-specific UMRs in COVID-19 
positive versus negative individuals, 8% and 4% of cell-spe-
cific UMRs overlapped with immune regulatory elements 
(p = 0.064) and 0.6% and 3% overlapped with epithelial 
regulatory elements (p = 0.032) (Supplemental Table  1). 
Regarding cell-specific LMRs in COVID-19 positive as 
compared to negative individuals, 31% and 8% of cell-
specific LMRs overlapped immune regulatory elements 
(p = 0.0037), 11% and 4% overlapped with lymphoid regula-
tory elements (p = 5.6 × 10–16), 20% and 3% overlapped with 
myeloid regulatory elements (p < 2.2 × 10–16), 2% and 3% 
overlapped with pulmonary elements (p < 2.2 × 10–16), and 
3% and 11% overlapped with epithelial regulatory elements 
(p < 2.2 × 10–16) (Supplemental Table 1).

In all, these results point towards activation of 
immune cells in nasal mucosa after SARS-CoV-2 infec-
tion and indicate that WGBS can capture methylation 

Table 1  Demographic features of hospitalized versus non-
hospitalized COVID-19 positive subjects

a Presented as median (IQR)
b Presented as n (%)

Item Hospitalized (n = 4) Non-
hospitalized 
(n = 57)

aAge (years) 60 (50, 66.75) 37 (27, 51)
bGender

  Female 1 (25) 25 (44)

  Male 3 (75) 32 (56)
bRace

  Black 1 (25) 27 (47)

  White 0 (0) 13 (23)

  Other 3 (75) 17 (30)
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signatures specific to these cell types. This suggests 
that our WGBS analysis of the nasal methylome can be 
used to infer differential regulation of immune-medi-
ated pathways in the setting of severe as compared to 
mild SARS-CoV-2 infection.

Preponderance of hypomethylated regions in severe 
COVID‑19 patients
To identify DMRs between individuals suffering from 
severe COVID-19 (i.e. requiring inpatient admission) 

versus individuals experiencing mild COVID-19 (i.e. 
remaining outpatient) we performed tiling window anal-
ysis using the WGBS data sets and logistic regression 
models with the self-reported measures of age, race, and 
gender included as covariates. To evaluate meaningful 
methylation differences, the top 10,000 DMRs as ranked 
by q-value (q-value < 1.20 × 10–15) were selected for fur-
ther analysis. These DMRs demonstrated a preponder-
ance of hypomethylated regions (n = 7,256) as compared 
to hypermethylated regions (n = 2,744) in hospitalized 

Fig. 1  Characterization of the regulatory landscape of the nasal methylome in COVID-19 positive and negative individuals. A The percentage 
(%) of unmethylated regions (UMR) overlapping cell-type specific regulatory elements as determined by DHS are depicted across COVID-19 
positive individuals (severe + mild) (dark blue), individuals with severe disease (red), mild disease (orange), or COVID-19 negative (light blue). B 
The percentage (%) of low methylated regions (LMR) overlapping cell-type specific regulatory elements as determined by DHS are depicted 
across COVID-19 positive individuals (severe + mild) (dark blue), individuals with severe disease (red), mild disease (orange), or COVID-19 negative 
(light blue)
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versus non-hospitalized subjects (Fig.  2A). Among 
these regions, 3,599 (49.6%) hypomethylated DMRs fell 
in intergenic regions as compared to hypermethylated 
DMRs where only 378 (13.8%) mapped to similar regions 
(Χ2 = 1,064.4, df = 1, p < 2.2 × 10–16). We then queried 
genes associated with hypo- and hypermethylated DMRs 
using Genomic Regions Enrichment of Annotations Tool 

(GREAT) algorithm [33, 34]. This yielded associations 
with 487 genes in hypomethylated regions and 503 genes 
in hypermethylated regions (Supplemental  Tables  3 and 
4). This similarity in gene counts associated with hypo- 
versus hypermethylated regions despite the substantial 
difference in DMR suggests interdependency of regula-
tory elements involved in gene activation associated with 

Fig. 2  Distribution of hypomethylated and hypermethylated differentially methylated regions (DMRs) by chromosome in severe versus mild 
COVID-19 and GO Biological Processes, KEGG Pathways, and Reactome Gene Sets associated with differentially methylated genes (DMGs) in severe 
versus mild COVID-19. A The top 10,000 DMRs according to q-value were subdivided by chromosomal location (y-axis). The percentage (x-axis) 
of relatively hypermethylated (blue) and hypomethylated (orange) DMRs in severe as compared to mild COVID-19 cases is shown on a per 
chromosome basis. B-C The most significant (p < 1 × 10–3) GO Biological Processes, KEGG Pathways, and Reactome Gene Sets related to the immune 
response in relatively hypomethylated (B) and hypermethylated (C) DMGs in individuals with severe as compared to mild COVID-19. -Log P values 
are displayed along the x-axis
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SARS-CoV-2 infection. Of note, this state of global hypo-
methylation has been previously appreciated in response 
to other viral infections [35].

To discern the relevant biologic pathways associated 
with these differentially methylated genes (DMGs) we 
performed pathway enrichment analysis. Enrichment of 
hypomethylated and hypermethylated DMGs in severe 
versus mild COVID-19 patients were carried out sepa-
rately. Pathway enrichment analysis using Coronascape 
[36] was performed on 487 relatively hypomethylated 
genes with a p-value threshold of ≤ 0.01 (Log10P ≤ −2) 
resulting in 353 Gene Ontology (GO) processes [37, 38], 
28 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways [39], 21 Reactome Gene Sets [40], 10 can-
nonical pathways [41], and 2 CORUM complexes [42]
(total 414 enriched pathways) previously associated 
with SARS-CoV-2 infection (Supplemental Table  5). Of 
these, associations with p ≤ 10–3 were manually evaluated 
(n = 124) and results associated with immune response 
were extracted (n = 17) (Fig.  2B, C). Themes emerging 
from these relatively hypomethylated immune-related 
pathways in severe compared to mild COVID-19 cases 
included processes related to Th1, Th2 and Th17 cell 
differentiation, regulation of T lymphocytes and hemat-
opoietic cell lines, regulation of the Notch signaling 
pathway, cytokine production and chemotaxis, and regu-
lation of macrophages and phagocytosis (Fig. 2B). In the 
similar analysis of relatively hypermethylated DMGs in 
severe versus mild COVID-19 cases, 423 GO Biological 
processes [37, 38], 40 KEGG pathways [39], 57 Reactome 
Gene Sets [40], and 12 canonical pathways [41] (total 532 
enriched pathways) met the p-value threshold of ≤ 0.01 
(LogP ≤ −2), while 181 had an associated p-value of ≤ 10–3 
(Supplemental Table 6). Of these 181 enriched pathways, 
36 were identified as being associated with the immune 
response (Fig.  2C). Emerging themes of these enriched 
immune-related pathways associated with hypermeth-
ylated genes in severe versus mild COVID-19 patients 
included processes associated with cell activation, pro-
liferation, and differentiation including hematopoietic 
cells from myeloid (e.g., neutrophils) and lymphoid (e.g., 
T cells) populations, leukocyte migration and adhe-
sion, neutrophil degranulation, adaptive and leukocyte 
mediated immunity, cytokine signaling, and host stress 
responses (Fig.  2C). These cumulative findings support 
previous reports of aberrancies in immune response in 
the face of mild/moderate as opposed to severe COVID-
19 [43–45].

Differential methylation of genes within the PI3K/Akt 
pathway and COVID‑19 severity
Upon closer manual evaluation of genes implicated 
in various enriched GO terms, KEGG pathways, and 

Reactome gene sets, we noted differential methyla-
tion between severe and mild COVID-19 individuals in 
many genes involved in the PI3K/Akt pathway (Fig.  3). 
Specifically, in the severe cohort compared to those 
with mild COVID-19, we noted relative hypomethyla-
tion of promoters whose genes have interplay with the 
PI3K/Akt pathway and SARS-CoV-2 infection, includ-
ing genes within the NF-κB (e.g., NFKBIA) and Notch 
(e.g., NOTCH1) signaling pathways (Fig.  3A). Genes 
mapping to the Notch signaling pathway were similarly 
appreciated as a significantly hypomethylated GO term 
in our enrichment analysis of severe as compared to mild 
COVID-19 patients (Fig. 2B).

Comparing severe versus mild SARS-CoV-2 infec-
tion, DMGs included relative hypomethylation of the 
AKT1 promoter (chr14: 104,796,001 – 104,796,500, 
methylation difference = −18.38%, q = 2.22 × 10–22) and 
of its downstream target, the type I interferon signaling 
molecule, ISG15 (chr1: 1,013,751 – 1,014,250, methyla-
tion difference = −32.27%, q = 2.49 × 10–35) (Fig.  3B, C). 
Further support implicating the PI3K/Akt pathway in 
the severe COVID-19 phenotype are the relative hypo-
methylation of ZEB2 (chr2: 144,524,251 – 144,524,750, 
methylation difference = −24.39%, q = 2.52 × 10–32) and 
SNAI1(chr20: 49,983,251 – 49,983,750, methylation dif-
ference = −28.98%, q = 6.11 × 10–16) promoters in severe 
versus mild disease. Coordinates and methylation dif-
ference of DMRs in genes associated with the PI3k/Akt 
pathway from our dataset are summarized in Supple-
mental Table 7.

Hypermethylation of immune cell surface markers 
in severe cases of COVID‑19
Differential expression of various immune cell surface 
makers have been noted in the setting of severe SARS-
CoV-2 infections, including CD15 (the gene product of 
FUT4) and CD8 [8, 43, 45–52]. In examination of the 
most significant differentially methylated bins in severe 
versus mild COVID-19 cases, we found the FUT4 pro-
moter to be relatively hypermethylated over a long region 
in hospitalized as compared to non-hospitalized subjects 
(chr11: 94,545,001–94552500, q = 2.90 × 10–112) (Fig. 4A). 
To further evaluate this finding, we visualized this region 
using the UCSC Genome Browser [53] comparing severe 
to mildly infected individuals, in addition to pooled sam-
ples from healthy controls (n = 7) and found that this 
relatively hypermethylated state of the FUT4 promoter 
among severe COVID-19 patients persisted across com-
parison groups (Fig.  4A). CD15, the gene product of 
FUT4, is predominately expressed in myeloid cells, as is 
shown in Fig. 4B, generated using the dataset of Monaco 
et al. [54] and the Human Protein Atlas (proteinatlas.org) 
[55]. We additionally noted significant hypermethylation 
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Fig. 3  Differentially methylated genes in the PI3K/Akt pathway in severe versus mild COVID-19 patients. A Ingenuity Pathway Analysis (QIAGEN 
Ingenuity Pathway Analysis (IPA) version 01–21-03, Venlo, Netherlands) was performed demonstrating the interplay of differentially methylated 
genes (DMGs) with AKT1. Hypomethylated DMGs in severe versus mild COVID-19 within our dataset are depicted in orange; hypermethylated 
DMGs in severe versus mild COVID-19 are depicted in blue. Known relationships between genes as activators (black) and repressors (red) are 
shown, with direct interactions displayed as solid lines and indirect as dashed lines. Created with BioRender.com. B, C WGBS methylation analysis 
demonstrating hypomethylation of the AKT1 (B) and ISG15 (C) promoters (yellow rectangle) in individuals with severe COVID-19 as compared 
to mild COVID-19. Y-axis demonstrates percent methylation at a given CpG site (0–100%). Figure generated using the UCSC Genome Browser
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of the CD8A promoter (chr2: 86,809,001–86809750, 
q = 1.50 × 10–21), which is strongly expressed in T cells 
(Fig.  4C, D). Cumulatively, these data provide evidence 
that myeloid cell dysfunction is associated with COVID-
19 severity, and that differential regulation of cell surface 
genes (e.g., FUT4, CD8A) may be either a cause or effect 
of disease severity.

Enrichment of ELF4 and ELF5 transcriptional motifs 
in hypermethylated regions
To better understand the regulatory pathways involved 
in COVID-19 pathogenesis and severity, we examined 

transcription factor binding sites among DMRs in 
severe versus mild COVID-19 samples. The top 25,000 
hypo- and hypermethylated bins as determined by 
q-value between severe and mildly infected individuals 
were evaluated separately using HOMER motif analy-
sis (Tables 2 and 3) [56]. Evaluation of hypermethylated 
regions revealed targets of ELF4 (p = 1 × 10–59, target 
sequences with motif = 11.34%, background sequences 
with motif = 8.33%) and ELF5 (p = 1 × 10–54, target 
sequences with motif = 8.84%, background sequences 
with motif = 6.31%) as among the most significantly 
enriched motifs (Table 3).

Fig. 4  Hypermethylation of the FUT4 and CD8A protomers in severe COVID-19 patients with predominate expression in myeloid cells. A WGBS 
methylation analysis demonstrating hypermethylation of the FUT4 promoter (yellow rectangle) in individuals with severe COVID-19 (top panel) 
as compared to mild COVID-19 (middle panel) and negative controls (bottom panel). Y-axis demonstrates percent methylation at a given CpG site 
(0–100%). Red lollipop (top panel) represents locus of SNP rs117126460, shown by the COVID-19 Host Genetics Initiative (HGI) to confer increased 
risk for COVID-19. Figure generated using the UCSC Genome Browser. B FUT4 is preferentially expressed in immune cells derived from the myeloid 
cell lineage (normalized transcripts per million, y-axis. Granulocytes = pink, Monocytes = red, T-cells = blue, B-cells = purple, Dendritic cells = teal, 
NK cells = magenta, Progenitors = olive, Total PBMC = brown. Image credit: Human Protein Atlas. Image reproduced from: v23.proteinatlas.org/
ENSG00000196371-FUT4/immune + cell#top. C WGBS methylation analysis demonstrating hypermethylation of the CD8A promoter. D CD8A 
is strongly expressed in T-cells. Image credit: Human Protein Atlas. Image reproduced from: v23.proteinatlas.org/ENSG00000153563-CD8A/
immune + cell
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Among these relatively hypermethylated DMRs in hos-
pitalized as compared to non-hospitalized individuals, 
2,829 were found to be targets of ELF4. More specifically, 
when annotating these regions based on DHSs [32], we 
found that 11.2% (n = 317) of these ELF4 targets over-
lapped signatures of myeloid cells as compared to non-
ELF4 targets, of which 8.6% (n = 1,906) overlapped with 
myeloid signatures (X2 = 20.75, df = 1, p = 5.23 × 10–6). 
Regarding lymphoid signatures, we found that the per-
centage of ELF4 and non-ELF4 targets overlapping 
with lymphoid cell DHSs were roughly equivalent, 9.9% 
(n = 280) and 9.1% (n = 2,024), respectively (X2 = 1.68, 
df = 1, p = 0.19). These findings are in keeping with the 
known preferential upregulation of ELF4 within mye-
loid cell lines (Supplemental Fig. 2) as well as its known 
role  in host antiviral response [57]. The distribution of 
ELF4 transcription factor binding motifs across cell types 
is summarized in Supplemental Fig. 3).

We identified 2,199 relatively hypermethylated 
DMRs as targets of ELF5 in severe as compared to mild 
COVID-19 individuals. Additionally, we noted relative 

hypermethylation (i.e., downregulation) of the ELF5 
promoter in COVID-19 positive individuals (severe or 
mild) as compared to COVID-19 negative (n = 7) patients 
(Fig.  5). Recently, Pietzner et  al. [58] suggested several 
genes to be potentially regulated or co-expressed with 
ELF5, of which 23 were also identified within our data-
set as being relatively hypermethylated targets of ELF5 in 
individuals with severe as compared to mild COVID-19 
(Supplemental Table 8). Notably, we found that C1orf116 
(chr1: 207,031,251–207031750, q = 7.85 × 10–7), PLAC8 
(chr4: 83,128,251–83,128,750, q = 4.43 × 10–10), and 
IFRD1 (chr7: 112,421,501–112422000, q = 8.15 × 10–9) 
were among these relatively hypermethylated ELF5 tar-
gets in severe as compared to mild COVID-19, all of 
which have been implicated in the host response to 
SARS-CoV-2 infection [59–61].

Supportive evidence
To validate our results and thereby overcome the limited 
sample size of our severely affected cohort, we analyzed 
external publicly available data sources. These sources 

Table 2  Most significantly enriched transcription factor binding motifs of hypomethylated regions in hospitalized versus non-
hospitalized COVID-19 patients

a Fold change represented as % targeted sequences/% background sequences
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corroborated many our interesting findings including the 
biological processes associated with COVID-19 severity, 
candidate genes associated with SARS-CoV-2 infection 
susceptibility or severity, and association of the PI3K/Akt 
pathway with COVID-19 severity.

Differential regulation of processes related to cell cycle 
regulation, cell migration, the cytokine response, immune 
cell regulation, and infection response are associated 
with SARS‑CoV‑2 infection severity
We utilized the Gene Expression Omnibus (GEO) 
tool, GEO2R, to examine differential gene expression 
in severe compared to mild COVID-19 patients in the 
datasets of Gómez-Carballa et  al. [62] and Rombauts 
et  al. [63]. In the case of Gómez-Carballa et  al., differ-
entially expressed genes (DEGs) from the nasal mucosa 
were evaluated from individuals with severe (n = 14) as 
compared to mild (n = 17) COVID-19. This yielded 159 
DEGs meeting a significance threshold of padj < 0.05. In 
the case of the dataset of Rombauts et  al., differential 

gene expression was evaluated in whole blood of hos-
pitalized COVID-19 positive patients at the time of 
admission between those who developed acute res-
piratory distress syndrome (ARDS) (n = 19) and those 
who did not (n = 31). When considering differentially 
expressed autosomal gene-associated loci, this resulted 
in 152 DEGs. The DEG lists generated from the data-
sets of Gómez-Carballa et al. and Rombauts et al. were 
then cross-referenced to the DMGs derived from our 
dataset. From these combined datasets, 28 unique DEGs 
overlapped with the DMGs noted within our data (dif-
ferential expression of HLA-DPA1 was present in both 
datasets). From the dataset of Gómez-Carballa et  al., 
19 DEGs overlapped with DMGs from our dataset (11 
hypomethylated, 8 hypermethylated). From the dataset 
of Rombauts et al., 10 DEGs overlapped with our iden-
tified DMGs (5 hypomethylated, 5 hypermethylated). 
Among these 28 overlapping genes, 16 genes (57%) dem-
onstrated a direction of differential expression concord-
ant with what is expected from our methylation data 

Table 3  Most significantly enriched transcription factor binding motifs of hypermethylated regions in hospitalized versus non-
hospitalized COVID-19 patients

a Fold change represented as % Targeted Sequences/% Background sequences
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(i.e., increased expression of hypomethylated genes; 
decreased expression of hypermethylated genes). These 
data are displayed in Table 4.

Notably, many of these DEGs/DMGs play crucial roles 
in the immune response. Downregulated and hyper-
methylated genes include: CD96 which inhibits NK cell 
and T cell activation; CD8A, a T cell surface marker; 
IRF4, a regulator of B cell development, LCK which typi-
cally activates the T cell receptor and in which mutations 

can cause severe combined immunodeficiency; ITGAL 
which mediates immune cell adhesion, and PTPN22, an 
immune marker. Overlapping genes that are hypometh-
ylated and show increased expression in severe as com-
pared to mild COVID-19 cases include: TLR5, involved 
in the response to bacterial pathogens; IL1R2 which sup-
presses the immune response; IKZF1, a regulator of lym-
phocyte development; and NOTCH1, involved in T cell 
development.

Fig. 5  Hypermethylation of the ELF5 promoter in nasopharyngeal samples of COVID-19 positive as compared to COVID-19 negative individuals. 
WGBS methylation analysis demonstrating hypermethylation of the ELF5 promoter (yellow rectangle) in individuals with severe COVID-19 (top 
panel) and mild COVID-19 (middle panel) as compared to negative controls (bottom panel). Y-axis demonstrates percent methylation at a given 
CpG site (0–100%). Figure generated using the UCSC Genome Browser
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These overlapping DEGs/DMGs were further evalu-
ated for pathway enrichment using Coronascape [36]. As 
previously described, hypo- and hypermethylated genes 
were evaluated separately. Regarding hypomethylated 
genes, a total of 73 enriched pathways (58 GO processes, 
10 KEGG pathways, and 5 Reactome Gene Sets) meeting 
a significance threshold of p ≤ 0.01 were identified (Sup-
plemental Table  9A). Regarding hypermethylated genes, 
a total of 42 enriched pathways (37 GO processes and 5 
Reactome Gene Sets) meeting a significance threshold 
of p ≤ 0.01 were identified (Supplemental Table 9B). Pre-
dominate themes emerging in these enriched pathways 
included regulation of immune cells and the immune 

response, as well as response to infectious pathogens. The 
top 25 enriched hypo- and hypermethylated pathways as 
determined by p-value are shown in Fig. 6. In total, this 
comparative evaluation of differential gene expression 
and pathway enrichment lends further evidence to the 
presence of immune dysregulation and alteration in the 
setting of severe COVID-19.

Differentially methylated genes in severe COVID‑19 
overlap genetic loci
To add validity to our identified differentially methyl-
ated gene list in individuals with severe as compared to 
mild SARS-CoV-2 infection, we used data from a recent 

Table 4  DMGs overlapping with DEGs in severe vs mild COVID-19 as identified in the datasets of Gómez-Carballa et al. and Rombauts 
et al. [62, 63]. Negative values represent relative hypomethylation in the case of Methylation difference (%) and decreased relative 
gene expression in the case of analyses of the Gómez-Carballa et al. and Rombauts et al. datasets. Methylation difference and 
q-value represent data derived from our original dataset. Log2 Fold Change and Padj represent data from comparative datasets. 
Rows in boldface indicate genes in which the direction of differential gene expression is concordant with what is expected from the 
methylation difference noted in our data

Gene Methylation difference 
(%)

q-value Overlapping dataset Log2 Fold Change Padj

CD96 11.2 1.50E-17 Gómez-Carballa −1.25 8.56E-04
IRF4 12.4 1.18E-20 Gómez-Carballa −0.90 8.79E-04
LCK 15.1 5.13E-18 Gómez-Carballa −0.96 1.50E-03
PTPN22 24.6 5.30E-17 Gómez-Carballa −0.74 7.69E-03
ITGAL 16.6 2.10E-16 Gómez-Carballa −0.62 7.69E-03
CD59 10.1 9.74E-23 Gómez-Carballa 0.64 7.69E-03

CD8A 17.3 1.50E-21 Gómez-Carballa −0.98 9.25E-03
IRAK2 12.5 3.40E-27 Gómez-Carballa 0.82 3.87E-02

TLR5 −16.7 2.71E-18 Gómez-Carballa 0.72 4.63E-05
IL1R2 −15.9 2.49E-16 Gómez-Carballa 1.85 1.06E-04
IKZF1 −14.1 5.54E-16 Gómez-Carballa 0.58 2.45E-03
CD6 −14.6 8.45E-16 Gómez-Carballa −1.17 7.96E-03

TBX21 −17.4 1.67E-22 Gómez-Carballa −1.40 9.55E-03

NOTCH1 −20.2 2.23E-16 Gómez-Carballa 0.63 1.17E-02
CD3E −14.7 4.09E-19 Gómez-Carballa −1.79 1.24E-02

NFKBIA −15.8 1.02E-16 Gómez-Carballa −2.19 1.70E-02

ICOS −21.7 4.62E-20 Gómez-Carballa −2.69 2.51E-02

GP1BB −23.7 5.95E-19 Gómez-Carballa 0.57 3.74E-02
HLA-DPA1 −20.1 1.10E-16 Gómez-Carballa −1.24 2.00E-03

Rombauts −0.83 5.79E-03

CEBPE 27 3.50E-17 Rombauts 0.32 3.47E-02

DPM2 17.9 1.32E-20 Rombauts −0.26 1.89E-02
LRG1 30.3 3.61E-23 Rombauts 0.50 4.59E-02

PSMG4 15.5 1.10E-21 Rombauts −0.24 4.13E-02
SEPT1 22.5 2.67E-19 Rombauts −0.58 1.11E-02
ALYREF −12.3 7.45E-17 Rombauts −0.33 4.79E-02

EEF2 −33.7 7.92E-24 Rombauts −0.34 2.24E-02

HHEX −12.6 4.84E-20 Rombauts 0.39 3.59E-02
KRT39 −10.1 7.67E-20 Rombauts 0.26 3.04E-02
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GWAS meta-analysis published by the COVID-19 Host 
Genetics Initiative [64] reporting 23 genetic loci asso-
ciated with SARS-CoV-2 infection susceptibility and/
or COVID-19 disease severity. Within our dataset, we 

identified differential methylation of eight genes that 
overlapped with those implicated in this previously pub-
lished meta-analysis (Table  5). Within our dataset, we 
found that relative hypermethylation of ABO was present 

Fig. 6  Differential regulation of immune cells and the response, as well as differential response to foreign pathogens are present in severe vs 
mild COVID-19. Utilizing the overlapping genes identified in our original dataset and the datasets of Gómez-Carballa et al. [62] and Rombauts et 
al. [63], the top 25 most significantly enriched GO Biological Processes, KEGG Pathways, and Reactome Gene Sets are displayed from relatively (A) 
hypo- and (B) hypermethylated in severe vs mild COVID-19. Ontologies are listed along the y-axis. -Log P values are displayed along the x-axis
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in severely as compared to mildly affected individuals. 
In severe as compared to mild cases, we noted relative 
hypomethylation of FDPS, CEP97, HLA-DPA1, OBP2B, 
MUC5B, PPP1R15A, and NAPSA.

PI3K/Akt pathway is associated with COVID‑19 severity
To support our findings indicating differential regula-
tion of the PI3K/Akt pathway in severe as compared to 
mild COVID-19 cases, we utilized the gene expression 
dataset of Gómez-Carballa et al. [62]. We evaluated dif-
ferential expression of the candidate genes identified 
in our methylation analysis in the nasal mucosa of indi-
viduals with severe (n = 14) compared to mild (n = 17) 
SARS-CoV-2 infection. Among the relatively hypo-
methylated candidate genes within the PI3K/Akt path-
way identified in our dataset (Fig.  3A), Gómez-Carballa 
and colleagues found increased expression of NFKBIA 
(Log2-fold change = 0.851, padj = 1.70 × 10–2), NOTCH1 
(Log2-fold change = 0.627, padj = 1.17 × 10–2) and TLR5 
(Log2-fold change = 0.717, padj = 4.63 × 10–5). Among the 
relatively hypermethylated genes in the PI3K/Akt path-
way from our dataset, Gómez-Carballa et al. found differ-
ential expression of ITGAL (Log2-fold change = −0.624, 
padj = 7.69 × 10–3) and GFI1 (Log2-fold change = −0.751, 
padj = 5.55 × 10–3) in individuals with severe compared to 
mild disease, and in keeping with our findings, both of 
these genes were significantly downregulated. For fur-
ther validation, we used publicly available single cell RNA 
sequencing (scRNA-seq) data from Chua et al. accessed 
through the UCSC Cell Browser (https://​covid-​airwa​
ys.​cells.​ucsc.​edu) [44, 65]. In the dataset of Chua et  al. 
we were able to examine scRNA-seq data derived from 
nasopharyngeal samples of individuals with critical cases 
of COVID-19, moderate cases, and control subjects 
(Fig. 7A). These data similarly showed greater expression 
of AKT1, TLR5, and MARK4 in secretory and ciliated 
cells of individuals with moderate and severe COVID-19 
as compared to healthy controls. ZEB2, NOTCH1, and 
ITGB2, showed increased expression in neutrophils and 

non-resident macrophage populations of individuals with 
severe COVID-19. IRF7, NFKBIA, and ISG15 showed 
upregulation in secretory, ciliated, and squamous cells, 
as well as in cytotoxic T lymphocytes, T regulatory cells, 
non-resident macrophages, and neutrophils of severe/
moderate cases compared to healthy controls (Fig.  7, 
Supplemental Fig.  4). These comparative data further 
strengthen our findings suggesting differential immune 
cell expression of PI3K/Akt-related genes in the naso-
pharynx of individuals with severe COVID-19 disease.

Discussion
In our exploration of the nasal epigenome, we high-
light differential methylation status as a key correlate of 
COVID-19 severity. Importantly, our approach of WGBS 
provides a comprehensive and unbiased evaluation of the 
nasal methylome in SARS-CoV-2 infection at single base 
pair resolution. This is in contrast to previous epigenome 
wide association studies (EWAS) of COVID-19, many of 
which performed restricted analyses in peripheral blood 
at predefined loci using array-based methods. As a result, 
these previous studies were unable to provide a compre-
hensive whole genome approach to methylation analysis 
and failed to evaluate epigenetic modulations in the res-
piratory tract (i.e., the target tissue of SARS-CoV-2) [30, 
31].

In this study, we demonstrate increased proportions 
of the LMR overlapping with immune cell regulatory 
elements in COVID-19 positive individuals, along with 
the preponderance hypomethylated DMRs in intergenic 
regions among individuals with severe disease. In so 
doing, we shed new light to the importance of enhancer-
like regions and distal regulatory elements in immune 
system regulation as it relates to COVID-19 severity.

As we explore our findings individually, our pathway 
enrichment analysis suggests the presence of aberrancies 
in the immune system in the face of severe as opposed 
to mild COVID-19, which is in keeping with prior stud-
ies [43–45]. In the comparison of severe versus mild 

Table 5  DMGs overlapping with known loci associated with COVID-19 risk

Gene Chromosome Start Stop Methylation difference 
(%)

q-value

FDPS chr1 155,306,501 155,307,000 −12.73 3.32 × 10–19

CEP97 chr3 101,727,251 101,727,750 −19.01 4.03 × 10–16

HLA-DPA1 chr6 33,080,751 33,081,250 −20.08 1.07 × 10–16

OBP2B chr9 133,211,251 133,211,750 −15.64 8.28 × 10–16

ABO chr9 133,275,751 133,276,250 13.43 2.14 × 10–29

MUC5B chr11 1,225,751 1,226,250 −23.41 1.11 × 10–16

PPP1R15A chr19 48,871,251 48,871,750 −12.33 7.39 × 10–23

NAPSA chr19 50,369,501 50,370,000 −35.15 3.38 × 10–43

https://covid-airways.cells.ucsc.edu
https://covid-airways.cells.ucsc.edu
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COVID-19, we appreciate differential activation of Th17, 
Th1, and Th2 as well as T cell selection (hypomethylated), 
but also note downregulation (hypermethylation) in leu-
kocyte activation, neutrophil degranulation and negative 
regulation of macrophage differentiation. These findings 
suggest differential activation of T cell subsets is occur-
ring in severe as compared to mild cases of COVID-19 

and indicate impairment or dysregulation in host innate 
immunity in those individuals who go on to develop more 
severe phenotypes. However, whether this is a causal 
relationship is unclear as it is possible that this immune 
dysregulation is a predisposing factor to development of 
severe disease but is also conceivable that immune dys-
function arises because of severe illness.

Fig. 7  Increased gene expression of AKT1 and ISG15 in the nasopharynx of moderate/severe COVID-19 patients as compared to COVID-19 negative 
individuals. CTL= Cytotoxic T lymphocytes, MC = Mast cell, moDC = Monocyte-derived dendritic cell, MoD-Ma = Monocyte-derived macrophage, 
Neu = Neutrophil, NK = Natural killer cell, NKT = NK T cell, NKT-p = Proliferating NKT cell, nrMA = non-resident macrophage, pDC = Plasmacytoid 
dendritic cell, rMA = Resident macrophage, Treg = Regulatory T cell. UMAP demonstrating differential gene expression by disease severity 
and cell-type in the nasopharynx. (A) Clustering by COVID-19 severity, Blue = Control, Red= Mild/moderate disease, Green = Critical disease. Gene 
expression as determined by scRNA-seq of (B) AKT1, (C) ISG15. Figure generated using the dataset of Chua et al. and the UCSC Cell Browser (https://
covid-airways.cells.ucsc.edu) [44, 65]
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Looking at the specific immune cell lineages and func-
tions that may be dysregulated in severe versus mild 
disease, our findings show differential methylation of 
genes impacting innate and adaptive immune cell func-
tions between disease severities. We note the substantial 
hypermethylation of the FUT4 promoter in individu-
als with severe as compared to mild SARS-CoV-2 infec-
tion. FUT4 has previously been highlighted as a marker 
of immature neutrophil or “proneutrophil” populations 
in the examination of peripheral blood of patients with 
severe COVID-19 [43, 45, 49]. In contrast to our finding 
of striking hypermethylation of the FUT4 promoter, sug-
gesting decreased gene expression in those with severe 
COVID-19, prior studies of SARS-CoV-2 infection dem-
onstrated circulating FUT4+ neutrophils to be present in 
greater abundance in individuals with severe COVID-19 
when compared to healthy controls and patients with 
mild COVID-19 cases [43, 45, 51, 52]. However, more 
recently and in keeping with our data, Karawajczyk 
et  al. showed decreased neutrophilic expression of the 
cell surface marker and gene product of FUT4, CD15, 
in severe COVID-19 patients [47]. They focused on the 
functional role of CD15 as an adhesion molecule, noting 
the simultaneous lack of upregulation of other adhesion 
molecules in the presence of severe infection. The rela-
tive hypermethylation of the FUT4 promoter in severe 
disease in our dataset, taken together with the signifi-
cantly enriched GO terms involved in leukocyte migra-
tion, adhesion, and tethering among hypermethylated 
genes implicate impaired localization of leukocytes as a 
potential pathophysiologic player or respondent in severe 
COVID-19. Building on this further, our data indicate 
that in a broader sense, neutrophil dysregulation may be 
associated with COVID-19 severity. This is supported by 
our finding of relative hypermethylation of genes impli-
cated in neutrophil degranulation (e.g., ELANE, AZU1, 
CD59, GSDMD, SERPINB1) in severe COVID-19.

We also identified relative hypermethylation of CD8A 
in individuals with severe as compared to mild COVID-
19. Throughout the COVID-19 pandemic, data has accu-
mulated demonstrating the importance of CD8+ T cells 
in the antiviral response to SARS-CoV-2 [8, 46, 48, 50, 66, 
67]. Robust populations of SARS-CoV-2-specific CD8+ 
T cells are associated with mild COVID-19 presenta-
tions [50], whereas CD8+ T cell depletion and exhaus-
tion have been shown to correlate with worsened disease 
severity and increased mortality [8, 46, 48]. It is possible 
that hypermethylation of genes responsible for the CD8 
antigen (e.g., CD8A) contribute to the decreased expres-
sion of CD8+ T cells and is among the reasons behind the 
CD8+ cytopenia observed in severe COVID-19 cases.

In addition to differential immune cell line regula-
tion between COVID-19 severities, we also appreciated 

differential methylation of genes related to the inflam-
matory and cytokine responses. For example, relative 
hypomethylation of PPP1R15A in individuals with severe 
COVID-19. PPP1R15A is a stress-response gene. Prior 
studies indicate increased levels of PPP1R15A expres-
sion is present within immune cells of severely affected 
COVID-19 patients [18, 68]. More specifically, PPP1R15A 
has been reported to have highest expression in immune 
cells containing the highest levels of viral RNA [68]. It is 
thought that this increased expression of PPP1R15A may 
contribute to COVID-19 severity through the induction 
of proinflammatory cytokines and by enhancing the sur-
vival and multiplication of infected cells [18].

Among the most important differentially methylated 
pathways between severe and mild disease in our data-
set was the differential methylation within the PI3K/Akt 
signaling pathway. The PI3K/Akt pathway is critical to 
regulation of IFN signaling and IFN effector genes as part 
of the host’s antiviral response. Increasingly, studies have 
demonstrated delayed or decreased type I IFN (IFN-I) 
and type III IFN (IFN-III) responses in severe COVID-
19 cases [15, 69–72]. We appreciated hypomethylation of 
the interferon-stimulated gene, ISG15, in individuals with 
severe as compared to mild COVID-19, which is con-
sistent with findings of the single cell profiling of airway 
cells in the COVID-19 Cell Atlas demonstrating ISG15 as 
among the top three most differentially expressed genes 
between severe COVID-19 disease and non-severe cases 
(https://​www.​covid​19cel​latlas.​org/​meyer​21_​airway/) 
[73]. ISG15 was suggested by Munnur et al. to be involved 
in COVID-19 pathogenesis at multiple levels: SARS-
CoV-2 stimulates the release of intracellular interferon-
stimulated gene 15 (ISG15) from infected macrophages, 
and extracellular ISG15 acts to exaggerate the cytokine/
chemokine inflammatory response [74]. Interestingly, 
we found within our data that some IFN-I genes were 
downregulated in severe as compared to mild COVID-19 
cases (i.e., IRF1), however other positive regulators of the 
IFN-I responses (e.g., IRF3, IRF7, IRF8) were hypometh-
ylated indicative of increased expression. We also noted 
relative hypermethylation of ELF4 targets among indi-
viduals with severe disease. ELF4 has a crucial role in the 
host antiviral response including contributing to NK cell 
development and function, regulating cell cycle arrest in 
naïve CD8+ cells in the face of viral infection, and driving 
IFN-I responses [57, 75, 76]. Cumulatively, these findings 
emphasize that disordered regulation of the IFN response 
may be associated with a more severe COVID-19 pheno-
type, either as a cause of or in response to severe disease.

Even prior to the SARS-CoV-2 pandemic, the PI3K/
Akt/mTOR pathway was recognized as crucial to 
the pathogenesis of other coronaviruses, namely the 
related Middle East respiratory syndrome coronavirus 

https://www.covid19cellatlas.org/meyer21_airway/
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(MERS-CoV) in which in  vitro studies demonstrated 
inhibition of this pathway could block viral proliferation 
[77, 78]. Building on this historical role of PI3K/Akt in 
RNA coronaviruses, PI3K/Akt signaling has been impli-
cated in SARS-CoV-2 pathogenesis in multiple organ 
systems and studies have demonstrated inhibition of 
SARS-CoV-2 replication in response to PI3K/Akt/mTOR 
blockade [77, 79, 80].

A possible explanation for the differential immune cell 
recruitment and inflammatory pathway activation seen 
in our dataset could be related to the concept of immune 
tolerance. Immune tolerance typically refers to an 
immune cell’s inability to activate gene transcription and 
perform its function in response to restimulation by a 
previously encountered antigen [81]. However, it has also 
been demonstrated that exposure to one pathogen can 
induce tolerance of the immune response to an unrelated 
pathogen (i.e., “heterologous immune tolerance”) [82]. 
Regardless of the primary exposure, immune tolerance 
leads to a less effective response to secondary stimuli.

Though not specifically evaluating SARS-CoV-2, 
Habibi et al. recently investigated the concept of differen-
tial mucosal immunity in the contraction of symptomatic 
respiratory syncytial virus (RSV) [83]. They acknowl-
edged that despite all adults having exposure to RSV, that 
even healthy individuals experience repeated RSV rein-
fection. In this elegant experiment, they administered 
RSV to healthy volunteers and evaluated differential gene 
expression in the nasal mucosa of those individuals who 
developed symptomatic RSV as compared to those who 
remained RSV PCR negative despite inoculation. Simi-
lar to our findings, they found differential activation of 
immune cells, namely prior activation of neutrophils, 
seemed to predispose to symptomatic viral infection. 
Based on this human subjects research and correlating 
mouse models, they postulated that preexisting neutro-
philic inflammation alters the tissue environment so that 
the recruitment of CD8 + T cells to the lung is increased 
later in the disease course thereby leading to a more 
severe phenotype. Though it remains fully possible that 
the differential methylation of the nasal epigenome in our 
study could be the result disease severity, rather than a 
predisposing factor to development of severe disease, 
these findings by Habibi et  al. strengthen the argument 
that baseline differences in the existing nasal immune cell 
landscape, perhaps due to prior exposures, could play an 
important role in the severity of respiratory illnesses. The 
subjects of our current study were evaluated prior to the 
advent of the SARS-CoV-2 vaccination initiative; how-
ever it is possible that remote exposures to viruses with 
homologous antigens to SARS-CoV-2, including the sea-
sonal human coronaviruses (HCoVs) that are most typi-
cally associated with mild respiratory disease, may have 

induced this tolerance to the SARS-CoV-2 virus. The 
concept of immune tolerance may be particularly impor-
tant in the context of methylation given that methylation 
changes can have long-term impacts on gene expression 
that propagate across cell divisions. In fact, emerging evi-
dence indicates that DNA methylation changes in blood 
associated with lymphocyte activation and the immune 
response persist on a longitudinal basis, and factors 
regulating chromatin accessibility may be particularly 
important in the response to RNA-viruses [29, 84]. Our 
identification of multiple biologic processes associated 
with response to a variety of infectious stimuli within 
our dataset and supportive datasets [62, 63] lends further 
evidence to the postulation that immune tolerance may 
be associated with COVID-19 severity. It is possible that 
methylation status of the immune regulatory genes could 
have been altered in response to remote exposures and 
modulated the host’s COVID-19 severity risk.

We found a relative degree of hypermethylation of 
ELF5 binding sites among individuals with severe as 
compared to mild COVID-19. Pietzner et  al. recently 
demonstrated increased ELF5 expression within respira-
tory epithelial cells as a risk factor for severe COVID-19 
[58]. However, they also noted substantially diminished 
ELF5 expression in the injured olfactory mucosa in indi-
viduals who experienced rapid death secondary to severe 
COVID-19 as compared to healthy controls. This finding 
of decreased ELF5 expression in the olfactory mucosa 
is in keeping with our noted hypermethylation of ELF5 
targets in these nasal mucosal swabs of individuals with 
severe COVID-19.

Within our dataset, relatively hypermethylated targets 
of ELF5 in individuals with severe as compared to mild 
COVID-19 included C1orf116 and PLAC8 (mediators of 
viral entry), and IFRD1 (an interferon-stimulated gene). 
Interestingly and in contrast to our data, COVID-19 stud-
ies using bronchoalveolar lavage samples, cell cultures, 
and in silico models, C1orf116, PLAC8, and IFRD1 have 
been overexpressed in severe cases [59–61]. It is possible 
that these differences arise due to differential cell popula-
tions of study (i.e., nasal mucosa as compared to the more 
distal respiratory tract). The nasopharynx represents 
the initial interface between host and the SARS-CoV-2 
virus, and as such, the nasal mucosa plays a critical role 
in inducing early innate and acquired immune responses 
[85]. It is possible that hypermethylation of these ELF5 
targets in the nasal mucosa contribute to impairments 
in early encounters between host and virus. This could 
result in delayed local and systemic responses, thereby 
providing the virus opportunity to infect distal airways 
before meeting host defenses. Similarly, it is possible 
that the hypermethylation of these ELF5 targets could 
arise as the result of severe disease could leave the host 
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vulnerable to additional respiratory insults, thereby wors-
ening their disease courses.

Our study does have some limitations. We have a rela-
tively small sample size, particularly with regard to our 
severe COVID-19 cohort. In this way, we may have been 
limited in our ability to identify significant associations 
of methylation and disease severity, as these may have 
been masked by interindividual variability within the 
severely affected group. Similarly, our small sample size 
has the potential of being underpowered, however, we 
were unable to perform a power analysis as this requires 
knowledge of effect size (i.e., the expected magnitude 
of association between an epigenetic variant specific to 
the nasal mucosa and COVID-19 severity) which is cur-
rently ill-defined. We overcame this limitation through 
use of a conservative definition of DMR, average meth-
ylation difference > 10% and q-value < 0.01. However, as 
we only included the top 10,000 most significant DMRs 
in our analysis as determined by q-value, our thresh-
old for inclusion was substantially more stringent with 
evaluated DMRs having a q-value < 1.20 × 10–15. We fur-
ther strengthened the confidence in our results through 
the corroboration of our findings with multiple publicly 
available genomic and transcriptomic datasets. As our 
samples were collected at the time of diagnosis, it is dif-
ficult to discern whether the methylation differences we 
appreciated were the cause of severe versus mild disease 
outcomes, or if these differences were the result of having 
severe as compared to mild disease. Finally, though we 
can extrapolate patterns of gene expression based on our 
knowledge of methylation and based on the transcrip-
tion analyses of others, we do not have direct measures 
of gene expression for the individuals within our dataset.

Conclusions
This whole genome interrogation of the nasal methylome 
suggests that methylation is linked to the host immune 
response to SARS-CoV-2 infection. It is difficult to dis-
cern whether these methylation differences between 
severe and mild disease are contributory to the severity 
of COVID-19, or if these epigenetic changes occur in 
response to the severity of illness. Differences in the nasal 
methylome between individuals with severe as compared 
to mild COVID-19 appear to modulate innate immunity 
through disruptions in neutrophil adhesion, localization, 
and degranulation. In the adaptive immune response, dif-
ferential methylation between individuals with severe and 
mild disease may lead to alterations in T cell populations. 
In part these differences in immune response and differ-
ential regulation of inflammatory pathways (e.g., PI3K/
Akt pathway) could be associated with immune toler-
ance. Further, impairments in the early immune defenses 
of the nasal mucosa may be related to COVID-19 severity. 

These findings highlight the continued need for explora-
tion into potential causative pathways as we seek to gain 
understanding of the SARS-CoV-2 viral pathophysiol-
ogy and gives evidence supporting investigation of these 
paths as putative therapeutic targets. Further, this study 
emphasizes the need to expand studies more broadly to 
enhance statistical power, and to perform longitudinal 
studies that include individuals prior to first SARS-CoV-2 
infection so as to better elucidate whether these identi-
fied mechanisms are the cause of severe disease or if they 
reflect a response to disease severity.

Methods
WGBS sample characteristics
Salvage nasal mucosa derived from patients presenting 
to the emergency department at University Health Tru-
man Medical Center were accessed and collected from 
mid-turbinate nasal flocked swabs as part of routine test-
ing for SARS-CoV-2 infection. Individuals were defined 
as being positive for COVID-19 if routine clinical PCR-
based testing for SARS-CoV-2 yielded a positive result; 
individuals were defined as COVID-19 negative if clini-
cal PCR-based testing for SARS-CoV-2 yielded a negative 
result. Positive subjects were defined as having severe 
disease if hospital admission was required, and were 
defined as having mild disease if they did not require 
hospitalization. Samples were obtained from 4 individu-
als with severe COVID-19, 57 with mild disease, and two 
pools of COVID-19 negative individuals (n = 8 and n = 7, 
respectively). Samples were stored in 3 mL of Universal 
Transport Medium where 200µL of each specimen was 
tested for SARS-CoV-2 and remaining aliquot was saved 
in −80°C freezer.

DNA Isolation
Nasal specimens were stored at −80°C and were brought 
to room temperature. DNA was isolated with a DNeasy 
Blood and Tissue Kit (Qiagen, Cat No. 69504) with the 
following modifications to kit protocol: 8  µL of RNase 
A was used instead of 4 µL during the optional RNase A 
step and the lysis incubation time at 56°C was increased 
to at least 3 h to ensure complete lysis of the specimens. 
After isolation, the DNA concentration of each sam-
ple was determined using a Qubit dsDNA HS Assay Kit 
(Fisher, Cat No. Q32851).

WGBS library preparation and sequencing
A minimum of 100 ng of DNA was aliquoted from each 
sample. Unmethylated λDNA was added to each sample at 
0.5% w/v and the samples were sheared mechanically using 
a Covaris LE220-plus system to a length of 350 bp, using the 
settings recommended by the manufacturer. The sizing was 
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determined by a High Sensitivity D1000 ScreenTape and 
Reagents (Agilent, Cat. No. 5067–5584 and 5067–5585) on 
the TapeStation platform. Once the input DNA was at the 
proper fragment size, the samples were concentrated with a 
SpeedVac to a volume of 20µL. The samples then underwent 
bisulfite conversion with an EZ DNA Methylation- Gold kit 
(Zymo, Cat. No. D5006). The samples were eluted off the 
spin columns with 15 μl of low EDTA TE buffer (Swift, Cat. 
No. 30024) before library preparation.

The low-input libraries were prepared using an ACCEL-
NGS Methyl-Seq Library kit (Swift, Cat. No. 30024) with 
a Methyl-Seq Set A Indexing Kit (Swift, Cat. No. 36024), 
following the protocol associated with the library kit. Dur-
ing the protocol, bead cleanup steps were performed with 
SPRIselect beads (Beckman Coulter, Cat. No. B23318). 
Following the recommendation of the kit, 6 PCR cycles 
were performed to amplify the samples. The final libraries 
were quantified with a Qubit dsDNA HS Assay Kit and the 
size was determined by using a BioAnalyzer High Sensi-
tivity DNA Kit (Agilent, Cat. No. 5067–4626). The librar-
ies were then sequenced on the Illumina NovaSeq6000 
System using 150 bp paired-end sequencing.

WGBS data processing
WGBS data was processed using the Epigenome Pipe-
line available from the DRAGEN Bio-IT platform (Edico 
Genomics/Illumina). Sequence reads were demultiplexed 
into FASTQ files using Illumina’s bcl2Fastq2-2.19.1 software 
and trimmed for quality (phred33 > = 20) and Illumina adapt-
ers using trimgalore v.0.4.2 (https://​github.​com/​Felix​Krueg​
er/​TrimG​alore). Reads were then aligned to the bisulfite-
converted GRCh38 reference genome using DRAGEN 
EP v2.6.3 in paired-end mode using the directional/Lister 
methylation protocol presets. Alignments were calculated 
for both Watson and Crick strands and the highest qual-
ity unique alignment was retained. Duplicated reads were 
removed using picard v 2.17.8 [86]. A genome-wide cytosine 
methylation report was generated by DRAGEN to record 
counts of methylated and unmethylated cytosines at each 
cytosine position in the genome. Methylation counts were 
provided for the CpG, CHG and CHH cytosine contexts but 
only CpG was considered in the study. To avoid potential 
biases in downstream analyses, CpGs were further filtered 
by removing CpGs: covered by five or less reads, and located 
within genomic regions that are known to have anomalous, 
unstructured, high signal/read counts as reported in DAC 
blacklisted regions (DBRs) or Duke excluded regions (DERs) 
generated by the ENCODE project [87].

Differential methylation analysis
Filtered methylation data from all nasal samples were 
merged according to disease severity. Only CpGs covered 
by at least 10 reads and present in at least 2 samples per 

group (50% of the severe sample size) were kept. DMRs 
of destranded autosomes were evaluated in an overlap-
ping tiling window analysis with window size 500 bp and 
step size 250 bp through a logistic regression analysis 
with age, gender, and race included as covariates using 
the R-package, methylKit [88]. P-values were adjusted to 
q-values using SLIM method. 

Comparative analysis of differential proportions of 
hypo- versus hypermethylated regions was carried out 
using Chi-square test of independence.

Gene annotation
Following differential methylation analysis, gene anno-
tation was limited to those bins with a q-value < 0.01 
and an absolute average methylation difference of > 10% 
between comparison groups. In the case of evaluation 
of DMRs between hospitalized versus non-hospitalized 
subjects, gene annotation was limited to those 10,000 
most statistically significant differences by q-value. Initial 
gene annotation was performed using Genomic Regions 
Enrichment of Annotations Tool (GREAT) algorithm [33, 
34](Association rule: Single nearest gene: 5000 bp max 
extension, curated regulatory domains included). Subse-
quent gene ontology was further explored using Coronas-
cape with hypo- and hypermethylated DMRs evaluated 
separately. Additional pathway analysis was performed 
using QIAGEN Ingenuity Pathway Analysis (IPA) version 
01–21-03 (QIAGEN, Venlo, Netherlands) examining all 
gene-associated loci with a q-value of < 0.05.

When evaluating the supportive transcriptomic datasets 
of Gómez-Carballa et  al. (GSE 183071, accessible from: 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE18​3071) [62] and Rombauts et al. (GSE212865, acces-
sible from: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE21​2865) [63], DEGs were evaluated using 
GEO2R software. GEO2R is an interactive web tool that 
allows comparison of two or more groups of samples in a 
GEO series to identify differentially expressed genes across 
experimental conditions. In the case of RNA-seq data, 
GEO2R uses the R package, DESeq2 [89], to perform dif-
ferential expression analysis using NCBI-computed raw 
count matrices as input. DESeq2 uses negative binomial 
generalized linear models and has features that offer con-
sistent performance over a large range of data types. In 
the case of the dataset of Rombauts et  al., differentially 
expressed genetic loci rather than differentially expressed 
genes were provided. As such, the GREAT algorithm was 
applied to significantly differentially expressed loci using 
the same association rule as described above.

Methylation segmentation
UMRs and LMRs for each samples set were called based 
on a pooled aggregate methylation profile across the 

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183071
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183071
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212865
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212865
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samples using MethylSeekR package (v 1.38) [90] from 
Bioconductor (v 3.16) [91, 92].

MethylSeekR: Burger L, Gaidatzis D, Schubeler D, Stadler 
MB (2013). “Identification of active regulatory regions from 
DNA methylation data.” Nucleic Acids Research. https://​
doi.​org/​10.​1093/​nar/​gkt599, http://​nar.​oxfor​djour​nals.​org/​
conte​nt/​early/​2013/​07/​04/​nar.​gkt599.​long.

Bioconductor: http://​www.​nature.​com/​nmeth/​journ​al/​v12/​
n2/​abs/​nmeth.​3252.​html, https://​genom​ebiol​ogy.​biome​dcent​
ral.​com/​artic​les/https://​doi.​org/​10.​1186/​gb-​2004-5-​10-​r80.

Annotation of regulatory elements
Genomic regions were further annotated for overlaps 
with the entire DNase I Hypersensitive Site (DHS) vocab-
ulary using the intersect function in the Bedtools suite (v 
2.30.0) [93] with minimum overlap of 1 nucleotide. The 
DHS coordinates were accessed from https://​zenodo.​
org/​record/​38387​51/​files/​DHS_​Index_​and_​Vocab​ulary_​
hg38_​WM201​90703.​txt.​gz using 16 different vocabulary 
representatives as outlined in Meuleman et al., 2020 [32].

BedTools: Quinlan AR and Hall IM, 2010. BEDTools: a 
flexible suite of utilities for comparing genomic features. 
Bioinformatics. 26, 6, pp. 841–842.

Transcription factor binding analysis
Transcription factor binding site (TFBS) motif analysis 
was performed using the Homer software (HOMER find-
MotifsGenome.pl v4.11.1) [90] using the central 200 bp 
of regions. Motif analysis was performed using HOMER 
software examining hypo- and hypermethylated regions 
separately, however, DMRs were expanded to include all 
regions with an absolute methylation difference of > 10% 
between groups and a q-value 1 × 10–5.
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