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Abstract 

Background  The increased demand for markers for colorectal cancer (CRC) highlights the importance of investigat-
ing immune cells involved in CRC progression. This study aims to dissect the mast cells in CRC, characterize the role 
of mast cells in CRC development, coordinate molecular communication between mast cells and malignant cells, 
and construct and validate a prognostic classification model based on mast cell markers.

Methods  Single-cell transcriptome data of CRC patients were extracted from GSE146771 for cell classifica-
tion and annotation. The malignant cells were identified by copykat and the communication between mast cells 
and malignant cells was analyzed by CellChat. Least absolute shrinkage and selection operator (LASSO) regres-
sion analysis and Cox regression analysis of mast cell markers were performed in the TCGA-COAD cohort to con-
struct a prognostic classification model. qRT-PCR was performed to detect the mRNA expression of the molecules 
in the classification model in P815 and MC-9 cells. The co-culture experiment of MC38 and P815 cells were per-
formed in 12-well transwell dish. Wound healing assay and Transwell assay were performed to detect cell migration 
and invasion.

Results  10,186 high-quality cells in GSE146771 were annotated to 9 cell types. Six markers in mast cells (HDC, GATA2, 
ASAH1, BTBD19, TIMP1, FAM110A) were selected to construct a classification model. The high-risk score defined 
showed high infiltration of immunosuppressive cells, including endothelial cells, CAFs, Tregs and high angiogenesis 
and epithelial-mesenchymal transition (EMT) activities. In the model, HDC were abnormally low expressed in P815 
cells, while BTBD19, FAM110A, GATA2, ASAH1 and TIMP1 showed excessive expression in P815 cells. Knockdown 
of GATA2 in the co-culture system of P815 and MC38 cells blocked cell migration and invasion.

Conclusion  This study identified the cell types within CRC, elaborated the cellular functions of mast cells in CRC 
development and their molecular communication to coordinate malignant cells, and highlighted the molecular com-
ponents and biological features that constitute promising prognostic classification model.
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Introduction
Colorectal cancer (CRC) is the third most diagnosed 
malignancy and the second leading cause of cancer 
death worldwide (https://​www.​who.​int/​news-​room/​
fact-​sheets/​detail/​color​ectal-​cancer). According to the 
data of the American Cancer Society in 2023, the inci-
dence of cancers is 8% for both males and females, and 
the mortality is 8% for male cancers and 9% for female 
cancers, respectively [1]. Most CRC cases are sporadic, 
which  have traditionally been viewed as a malignancy 
of older individuals. With demographic aging, CRC will 
pose a rapidly increasing challenge for numerous socie-
ties [2–4]. Moreover, CRC cases and mortality in young 
people have been increasing over the past few decades 
[5–7]. To address the burden of CRC, there is an increas-
ing need to define the molecular, biological and microen-
vironmental landscape of individual patients, to develop 
screening strategies to facilitate its detection, and to find 
biomarkers for more accurate diagnosis, prognosis and 
treatment of CRC [8, 9].

It has become clear that mast cells, which are always 
present in the cancer matrix, may well contribute to 
the inflammatory microenvironment that forms cancer 
behavior [10]. Mast cells are tissue-resident effector cells 
derived from the hematopoietic system and represent a 
non-negligible immune cell population in tumor micro-
environment (TME) [11]. Mast cells are considered to 
be distinguishable participants and coordinators of both 
pro-tumor and anti-tumor responses. On the one hand, 
they can promote different processes leading to tumor 
progression, such as angiogenesis, lymphangiogenesis, 
fibrosis and metastasis; however, mast cells can addition-
ally release mediators capable of inducing the recruit-
ment of other immune cells to the tumor, which can 
perform either pro-or anti-tumor functions [12]. The 
exact role of mast cells in tumor initiation and growth 
of CRC also remains controversial. Some studies have 
found that the activation of immune responses in CRC 
patients with low mast cell density may help prolong sur-
vival, while in patients with high mast cell density, genes 
and chemokines related to epithelial-mesenchymal tran-
sition (EMT) are highly expressed, suggesting a poorer 
prognosis for CRC patients with high mast cell density 
[13]. Mast cells in CRC exhibit heterogeneity, including 
different subtypes and activation states, which may be 
an important factor contributing to the diverse effects of 
mast cells [14] and are extremely sensitive to TME cues 
and represent an important tool for CRC outcome [15]. 
Therefore, before the determination on whether  mast 
cells can be used as prognostic/predictive markers, it is 
necessary to characterize their biology in greater depth 
and identify specific features associated with their 

activation, localization, and complex relationships with 
tumor cells.

Due to averaging measurements of cell populations, 
traditional bulk transcriptome studies are limited by 
insufficient resolution to characterize the expression 
of ligands and receptors in specific cell types as well 
as in different cell types [16, 17]. In this study, sin-
gle-cell transcriptome analysis of CRC samples from 
the  GSE146771 dataset was performed to dissect cell 
types in tumors and characterize mast cell density 
and proximity communication between mast cells and 
malignant cells in the context of CRC. Then, combined 
with bulk RNA-seq data, the molecules that can be 
used as prognostic markers of CRC were selected from 
mast cell markers to build a classification model, and 
the effect of selected molecules on the fate of tumor 
cells was verified by cell experiments in vitro.

Materials and methods
Collection of CRC transcriptome data
TCGA database was accessed through TCGA GDC 
APC, and the data of different attributes of colon cancer 
patients in TCGA-COAD cohort were captured, includ-
ing transcriptome data and clinical follow-up data. Sam-
ples with poorly documented survival information were 
filtered out, and the remaining 483 colon cancer samples 
were included in the analysis. Ensembl_ID was converted 
to Gene symbol and expression matrix was transformed 
according to log2(FPKM + 1). The GSE38832 data-
set was  also retrieved from the GEO database, and the 
microarray data and annotation information of 122 CRC 
samples were downloaded. The probes were matched to 
genes according to the annotation information.

Collection and analysis of CRC single‑cell transcriptome 
data
The dataset GSE146771 was uploaded into the GEO data-
base to extract single-cell transcriptome data of 10 CRC 
patients and analyzed using Seurat [18] in R. For quality 
control, 10,186 high quality cells were screened out by fil-
tering out cells with more than 5% mitochondrial genes 
and 1000–7000 gene  counts. The data was integrated 
using “Harmony” package. A SeuratObject was gener-
ated for each sample, normalized and scaled using the 
"NormalizeData" function and the ScaleData function. 
Dimensionality reduction and clustering were performed 
using the "RunPCA", "RunUMAP", "FindNeighbors" and 
"FindClusters" functions in the Seurat package. Cell clus-
ters were aligned with CellMarker [17]-derived labeling 
information to identify their identity. The specific marker 
genes of the cell population were identified by using the 
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"FindAllMakers" function. The ligand-receptor interac-
tion was analyzed by CellChat and visualized as bubble 
plot.

Development of a risk classifier
A 7:3 ratio was followed to divide the TCGA-COAD 
cohort into two mutually exclusive parts, with 70% as 
the training set and 30% as the validation set. Univariate 
Cox regression analysis was performed on the data in the 
training set. The genes with a threshold of p < 0.05 were 
analyzed using the R package "glmnet" [19] for Lasso 
Cox regression analysis, which added a penalty func-
tion to continuously compress the coefficients to achieve 
the purpose of simplifying the model. Multivariate Cox 
regression analysis was used to further evaluate the CRC 
prognostic association in the genes screened by LASSO, 
and the risk coefficients of prognostic related genes were 
given to obtain the risk classifier. This risk classifier was 
introduced into the training set and validation set of 
TCGA-COAD, and the GSE38832 dataset to calculate 
the risk score, and the "survminer" package [20] was 
served to determine the boundary between the high-risk 
group and the low-risk group. Kaplan–Meier survival 
analysis and Receiver Operating Characteristic (ROC) 
analysis were used to evaluate the efficacy of the model in 
predicting the prognosis of CRC.

Formulation and evaluation of nomogram
Variables associated with CRC prognosis were calcu-
lated by univariate Cox analysis. Multivariable Cox 
regression was fitted using covariates, namely the clini-
cal characteristics of the samples in the TCGA-COAD 
cohort, thereby selected input variables for the devel-
opment of the nomogram. The nomogram consisted of 
a point line, a risk factor line, a probability line, and a 
total point line. The performance of the nomogram was 
judged using calibration curves and DCA, both gener-
ated by R package"rms" [21].

Pathway activity analysis
The hallmark gene sets were obtained from the human 
Molecular Signatures Database (MSigDB), and AUCell 
[22] was served to quantify the AUC scores of 50 gene 
sets in cells. Spearman correlation analysis was adopted 
to calculate the association between the expression of 
genes in the model and AUC scores, and the pathways 
with p < 0.05 were visualized. GSEA calculated normal-
ized enrichment score (NES) by reading and analyzing 
the expression data and KEGG pathway data of the high-
risk and low-risk groups in the TCGA-COAD cohort, 
and NES > 0 indicated activation, and NES < 0 indicated 
inhibition.

Cells maintenance and co‑culture
The mouse CRC cell line MC38 (BNCC341872), mast 
cell line MC-9 (VGC-0634-0000) and P815 (JNO-
M0232) were purchased from BNCC (Xinyang, 
China),  Vigenbio (Zhenjiang, China), and Jennio-Bio 
(Guangzhou, China),  respectively. Cells were cultured 
and maintained according to the instructions. The co-
culture experiment of MC38 and P815 cells  were per-
formed in 12-well transwell dish  based on a previous 
study with some modifications [23]. The 1 × 106 P815 
cells following the transfection of GATA2-specific 
siRNA or the control siRNA  were seeded in the upper 
chamber, and 1 × 106 MC38  cells were seeded in the 
lower  insert (0.4 μm pore size; BD  Biosciences, Frank-
lin Lakes, NJ, USA) containing DMEM/F12 serum-free 
medium. The medium was changed every 3 days for 14 
days, and the cells co-cultured for 2 weeks were taken 
for subsequent analysis.

qRT‑PCR was conducted to detect mRNA levels
Total RNA was extracted from cells using TRI-
zol reagent (15596-026,  Thermo Fisher Scientific, 
Waltham, MA, USA) and  the mRNA concentration 
was determined using Nanodrop (ND-2000,  Thermo 
Fisher Scientific, USA). qRT-PCR was performed 
using the one-step SYBR PrimeScript RT-PCR Kit 
(RR055A,  Takara Bio,  Shiga, Japan) according to the 
experimental protocol instructions provided by the 
manufacturer.  The relative expression level was quan-
tified using the 2−△△Ct method  with GAPDH as the 
housekeeping control. The primer sequences are shown 
in Table 1.

Table 1  Primers used in this study

Gene Sequences

HDC Forward 5’-ATG​AGT​CCT​GCC​TAA​ATG​CCC-3’

Reverse 5’-CCT​CGG​AGT​GAG​AAG​TTG​TCA-3’

BTBD19 Forward 5’- CTG​GTC​GTG​CAT​GGG​AAA​G-3’

Reverse 5’- ATC​ACT​GTA​TCG​CGG​GTT​GTT-3’

FAM110A Forward 5’- GTC​CCT​GGC​TAC​CTG​CTA​C-3’

Reverse 5’- CTG​TCA​CAC​AAG​TCG​ATG​AGG −3’

GATA2 Forward 5’- CAG​CAA​GGC​TCG​TTC​CTG​TT-3’

Reverse 5’- GGC​TTG​ATG​AGT​GGT​CGG​T-3’

ASAH1 Forward 5’- AAC​TCG​ATG​CTA​AGC​AGG​GTA −3’

Reverse 5’- GCG​ATC​ATC​AAG​GAA​GAA​GGG-3’

TIMP1 Forward 5’- CTT​CTG​CAA​TTC​CGA​CCT​CGT-3’

Reverse 5’- ACG​CTG​GTA​TAA​GGT​GGT​CTG-3’

GAPDH Forward 5’- CTG​GGC​TAC​ACT​GAG​CAC​C-3’

Reverse 5’- AAG​TGG​TCG​TTG​AGG​GCA​ATG-3’
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Cell invasion analysis
The invasion assay involves the addition of an extracellu-
lar matrix on top of a porous membrane that only allows 
chemotaxis of tumor cells with invasive properties [24]. 
Here, siRNA-transfected P815 cells were co-cultured 
with  MC38 cells  and were seeded in transwell cham-
bers (8 μm pore, BD Biosciences, USA) coated with 0.2% 
Matrigel (BD Biosciences, USA) for invasion assay. The 
lower chamber was supplemented with medium contain-
ing 10% fetal bovine serum. After 24 h, the invaded cells 
were fixed with paraformaldehyde and stained with crys-
tal violet and placed under a light microscope to capture 
images.

Wound healing assay
Wound-healing assay was performed on MC38 
cells  cocultured with transfected P815 cells to assess 

migration ability. In short, when the monolayer of 
MC38  cells were fully confluent, the wound area was 
delineated with a 200 μL aseptic pipette. After washing 
with PBS, cells were maintained in serum-free medium 
for 48 h, and the image of wound area was captured 
by a light  microscope, and wound closure rate was 
accordingly calculated.

Statistical analysis
Bioinformatics data were statistically analyzed by R soft-
ware. Each cytological experiment was repeated three 
times independently, and the resulting data were statisti-
cally analyzed using SPSS software [25]. Cluster visuali-
zations of the UMAP plots were drawn using the ggplot2 
package. Differences in quantitative data between the two 
groups were tested by the t-test and wilcoxon test. And 
p < 0.05 was considered to indicate statistical significance 

Fig. 1  Cell landscape of CRC. A Cluster UMAP diagram of 10,186 high-quality cells based on seurat package. B An UMAP diagram based on cell 
type annotations. C Mean expression levels of markers genes for each cell type displayed in the bubble plot. The depth of the blue represents 
the average expression level in this cell type, and the size of the dots represents the percent expressed of the gene in this cell type. D Proportion 
of different cell types in normal (blue) and CRC (orange) tumor tissues
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and was represented by * in the pictures. ** was p < 0.01, 
*** was p < 0.001, **** was p < 0.0001.

Results
Cell landscape of CRC​
By clustering 10,186 high-quality cells screened from 
GSE146771, 11 cell clusters were obtained, which were 
mapped to 9 cell types, namely B cells (CD79A, MS4A1), 
CD8 + T cells (CD8A, GZMK, CD8B), naive T cell (LEF1, 
MAL), regulatory T cells (Tregs) (FOXP3, CTLA4), epi-
thelial cells (KRT19, KRT18, EPCAM), cancer-associ-
ated fibroblast (CAFs) (IGFBP7, COL4A1), macrophage 
(S100A9, AIF1, CD14), mast cells (TPSAB1, CPA3) and 
Tprolif (a type of lymphocytes with immunoregulatory 

functions) (MKI67, TOP2A) (Fig.  1A-C). Differentially 
expressed genes (DEGs) for each type of cell are shown 
in Supplementary Fig. 1. By comparing tumor tissue with 
normal tissue, it was found that the distribution of cells 
in CRC immune system was out of balance, Tprolif, mast 
cells and immunosuppressive cells CAFs, Tregs, mac-
rophage, and epithelial cells were over-enriched, while B 
cells and CD8 + T-cells was insufficient (Fig. 1D). There-
fore, it is speculated that CRC tumors may exhibit an 
immunosuppressive microenvironment.

Regulatory role of mast cells in CRC​
Mast cells are also frequently observed in the TME, sug-
gesting that they play an important role in the transition 

Fig. 2  Regulatory role of mast cells in CRC. A Ligand-receptor pairs that mediate communication between mast cells and malignant 
and non-malignant cells. B KEGG pathways annotated by mast cell specific highly expressed genes. In this figure, the size of the dots indicates 
the count, while the color signifies the p-value. The larger the p-value, the bluer the color; the smaller the p-value, the redder the color. And "count" 
represents the number of enriched genes. C GO biological processes annotated by mast cell specific highly expressed genes. In this figure, the size 
of the dots indicates the count, while the color signifies the p-value. The larger the p-value, the bluer the color; the smaller the p-value, the redder 
the color. And "count" represents the number of enriched genes
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from chronic inflammation to cancer. It has long been 
recognized that patients with inflammatory bowel disease 
have an increased risk of colon cancer [15, 26]. Herein, 
the regulatory role of mast cells in CRC was explored, 
including the dominant ligand-receptor pair in commu-
nication with malignant cells and the regulatory pathway 
of mast cell marker genes. Malignant and nonmalignant 
cells were identified by using the copykat package. By 
analyzing the communication of mast cells with malig-
nant cells and with non-malignant cells, we found that 
the number of ligand-receptor pairs that affect the com-
munication of mast cells with malignant cells was higher 
than that of non-malignant cells. Among them, ligand-
receptor pairs in WNT signal transduction, includ-
ing WNT2B-(FZD6 + LRP6), WNT2B-(FZD6 + LRP5), 
WNT2B-(FZD5 + LRP6), WNT2B-(FZD5 + LRP5), WNT2B- 
(FZD3 + LRP6), WNT2B-(FZD3 + LRP5), immunomodula-
tory ligand-receptor pairs, such as TNFSF10-TNFRSF10B, 
LGALS9-CD44, CTSG-PARD3, CTSG-F2RL1 and GRN- 
SORT1, were ligand-receptor pairs particularly involved 
in mast cell communication with malignant cells 
(Fig. 2A). For the specific high expression genes of mast 
cell, they were significantly annotated on KEGG path-
ways such as transcriptional misregulation in cancer, 
hematopoietic cell lineage, platelet activation and immu-
nomodulatory biological processes including activation 
of mast cells, leukocytes and neutrophils (Fig.  2B, C). 
Those analysis indicated that mast cell maybe involved in 
occurrence and development of CRC.

Model development and assessment
For the training and test sets divided in the TCGA-
COAD cohort, there were no significant differences 
in clinical characteristics between the two sets, indi-
cating the randomness and rationality of the group-
ing (Table  2). The most predictive molecular selection 
of mast cells markers was achieved by LASSO regres-
sion analysis and Cox regression analysis (Fig.  3A, B), 
and the classification model was formed, Risk score 
= (−1.254 ∗HDC + 0.521 ∗ GATA2− 0.559 ∗ ASAH1+

0.707 ∗ BTBD19+ 0.334 ∗ TIMP1+ 0.381 ∗ FAM110A   . 
The risk score of samples in each downloaded CRC 
sequencing set was calculated and classified according to 
the classification model. The prognostic classification fea-
sibility of the model was detected in the training set, test 
set, unsplit TCGA-COAD dataset and GSE38832 dataset 
of the TCGA-COAD cohort. In terms of survival, that of 
the high-risk group was always significantly higher than 
the low-risk group at any given time point. The accu-
racy of the classification model for 1-year prognosis, the 
area under the ROC curve (AUC), was higher than 0.7 
in the training set, test set, unsplit TCGA-COAD cohort 
and GSE38832. The 3-year AUC in the four sets were 
0.71, 0.7, 0.71 and 0.64, and the 5-year AUC in the four 
sets were 0.72, 0.72, 0.71 and 0.64, respectively (Fig. 3C-
F). The results suggest that these markers in mast cells 
play important roles in CRC pathology.

Table 2  Comparison of clinical features of the training and test sets in the TCGA-COAD cohort

Characteristics Training Set(N = 307) Test Set(N = 131) Total(N = 438) P value

Age 0.86

  Mean ± SD 66.49 ± 12.92 66.87 ± 13.25 66.60 ± 13.00

  Median[min–max] 69.00[34.00,90.00] 68.00[31.00,90.00] 68.00[31.00,90.00]

Gender 0.35

  FEMALE 138(31.51%) 66(15.07%) 204(46.58%)

  MALE 169(38.58%) 65(14.84%) 234(53.42%)

AJCC_stage 0.79

  I 49(11.19%) 24(5.48%) 73(16.67%)

  II 114(26.03%) 53(12.10%) 167(38.13%)

  III 91(20.78%) 35(7.99%) 126(28.77%)

  IV 44(10.05%) 17(3.88%) 61(13.93%)

  NA 9(2.05%) 2(0.46%) 11(2.51%)

Status 0.09

  Alive 231(52.74%) 109(24.89%) 340(77.63%)

  Death 76(17.35%) 22(5.02%) 98(22.37%)

OS.time 0.22

  Mean ± SD 841.33 ± 708.71 992.89 ± 916.77 886.66 ± 778.81

  Median[min–max] 669.00[6.00,4126.00] 735.00[28.00,4502.00] 683.50[6.00,4502.00]
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Establishment of a prognostic nomogram for CRC patients
Univariate Cox regression analysis described the survival 
of clinical characteristic factors and risk score, age, AJCC 
stage and risk score were significantly relevant to the 
prognosis of CRC (Fig. 4A), and they still showed inde-
pendent prognostic value when fitted to the multivari-
ate Cox analysis (Fig. 4B). A nomogram integrated these 
independent prognostic features was plotted  to predict 
overall survival (OS) (Fig.  4C). From the calibration 
curve, the 1 -, 3 -, and 5-year OS predicted by the nomo-
gram were highly consistent with the actual OS (Fig. 4D). 
In addition, the decision curve analysis (DCA) curve 
was generated for nomogram and independent prog-
nostic features, and the benefit of nomogram was higher 
than that of the three independent prognostic features 
(Fig.  4E). The results showed that the nomogram could 
systematically predict patient OS at 1, 3, and 5 years.

Immunology relevance of classification model and its 
molecules
In terms of immune cell infiltration, the high-risk group 
defined by the classification model showed a higher 
abundance of endothelial cells, CAFs, Tregs, and M0 
macrophages infiltration and a lower abundance of NK 
cells, myeloid dendritic cells, than the low-risk group 
(Fig.  5A, p < 0.05). For molecules in the classification 
model, HDC, GATA2, ASAH1, BTBD19, and TIMP1 
all showed significant positive correlations with stro-
mal score, immune score, and ESTIMATE score, and 
a significant negative correlation with tumor purity 
(Fig. 5B, p < 0.001). In the high-risk group, the immune 
scores of T cell resting memory CD4 + T cell, activated 
memory CD4 + T cell, M1 macrophage infiltration 
were all significantly lower than those in the low-risk 
group (Fig.  5C, p < 0.05). Mast cells-related molecules 
in the classification model include HDC, GATA2 and 

Fig. 3  Model development and assessment. A LASSO penalty and cross validation. B Multivariate Cox regression was applied to determine the 
effect size (hazard ratio) and statistical significance for each gene. C-F Survival curve and ROC curve generated based on prognostic classification 
model in training set, test set of TCGA-COAD cohort, unsplit TCGA-COAD dataset and GSE38832 dataset
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BTBD19 (Fig. 5D, p < 0.001). It was suggested by these 
findings that risk score was linked with immunities 
since it was closely related to several critical innate 
immunity‐related components (T cell, NK cells, and 
macrophages).

Classification model and signal regulation of molecules 
in the model
The relevance between the classification model and the 
molecules in it and the signaling pathways were analyzed. 
Both HDC and GATA2 showed significant positive corre-
lations with immune signaling mechanisms, such as IL2 
STAT signaling, IL6 JA-STAT3 signaling, and inflamma-
tory response. HDC was also positively correlated with 
EMT and angiogenesis, which are essential mechanisms 

for cancer metastasis (Fig.  6A, B). Both ASH1 and 
FAM110A were significantly positively linked with com-
plement and oxidative phosphorylation (Fig.  6C, E). 
TIMP also showed significant positive correlations with 
angiogenesis, complement, EMT, and inflammatory 
response (Fig.  6D). The dominant signaling pathways 
also showed differences between the high-risk and low-
risk groups. Cancer-promoting pathways such as EMT, 
hypoxia and angiogenesis were significantly enriched in 
the high-risk group, while metabolic and immunomodu-
latory pathways were significantly enriched in the low-
risk group (Fig. 6F). We further analyzed the correlation 
between genes in model and inflammatory factors such 
as interleukin (IL1B, IL2, IL6, IL10), chemokines, inter-
feron-associated cytokines (IFNG), tumor necrosis fac-
tor (TNFSF10), and growth factor (TGFB1), and found 

Fig. 4  The nomogram integrated independent prognostic factors of CRC to optimize the model. A Correlation of risk score and clinical 
characteristics of samples in the TCGA-COAD cohort with OS. B Multivariable Cox regression using covariate fit. The error bars represent the 95% 
confidence interval. C The nomogram integrating independent prognostic features. D Calibration curve to assess the accuracy of the nomogram. E 
Yield assessment of nomogram and independent prognostic features
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that they showed a strong positive correlation with 
most inflammatory factors (Fig.  6G). Close associations 
between genes of risk score and cancer related pathways 
were therefore validated.

Expression and pathological function of the molecules 
in the classification model in CRC cells
The mRNA expression of the molecules in the classi-
fication model was examined in MC-9 and P815 cells 

by performing qRT-PCR. HDC in the classification 
model were abnormally low expressed in P815 cells, 
while GATA2, BTBD19, FAM110A, ASAH1 and TIMP1 
showed excessive expression in P815 cells (Fig.  7A-F). 
When GATA2 expression was knocked down after the 
indirect co-culture system of MC38 and P815 was con-
structed, then the cell migration and invasion were 
measured, and the cells had a reduced spread range, as 
indicated by reduced would closure rate and invasion rate 

Fig. 5  Immunology relevance of classification model and its molecules. A The infiltration of immune cells in the high-risk and low-risk groups 
defined by the classification model. B Correlation of molecules in the classification model with stromal score, immune score, ESTIMATE score 
and tumor purity, respectively. C Differences in leukocyte infiltration between high-risk and low-risk samples. D Correlation matrix between genes 
in the classification model and leukocyte infiltration scores
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(Fig. 7G-H). Those experiments indicated that mast cell 
influenced phenotype of CRC.

Discussion
Tumor heterogeneity is common in CRC patients. Vari-
ous immune cells and inflammatory chemokines in 
the TME interact and influence each other to regulate 
tumor progression, thereby affecting tumor recurrence 
and treatment response, and having a great impact on 
the prognosis of patients [27]. Here, we dissected 9  cell 
types in CRC, including B cells, CD8 + T cells, naive T 
cell, Tprolif, Tregs, epithelial cells, CAFs, macrophage, 
and mast cells. In the tumor tissue,  Tprolif, mast cells 
and CAFs, Tregs, macrophages, mast cells and epithe-
lial cells were overdistributed, while B cells and CD8 + T 
cells were underrepresented. Among them, CAFs [28], 
Tregs, macrophages [29] and epithelial cells that have 

undergone EMT [30] are all immunosuppressive cells, 
and therefore, the CRCs we analyzed are likely to exhibit 
immunosuppressive microenvironment.

The number of mast cells, the so-called mast cell den-
sity (MCD), has been increased in CRC [31]. We also 
found excessive accumulation of mast cells in CRC. 
Within the tumor, mast cells interact with infiltrat-
ing immune cells, tumor cells and extracellular matrix, 
which is achieved through direct cell–cell interaction 
or the release of multiple mediators capable of remod-
eling the TME, and ultimately affect TME remodeling 
and the fate of tumor cells [32, 33]. In this study, we 
distinguished malignant cells in CRC and found that 
mediators mediating the interaction between mast cells 
and them included ligand-receptor pairs in WNT sig-
nal transduction and ligand-receptor pairs related to 
immune/inflammatory regulation. The effect of MCS 

Fig. 6  Classification model and signal regulation of molecules in the model. A-E Association of HDC, GATA2, ASH1, TIMP, and FAM110A 
with the hallmark pathway. F GSEA analysis of the classification model. The "activated" pathways with scores greater than 0 are those that are 
activated in the high-risk group but suppressed in the low-risk group, while the "suppressed" pathways with scores less than 0 represent those 
that are more active in the low-risk group and suppressed in the high-risk group. G Association of HDC, GATA2, ASH1, TIMP, and FAM110A 
with the inflammatory factors. And "count" represents the number of enriched genes
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is caused by their localization, density, activation and 
degranulation state, secretion of cytokines and/or pro-
teases, and proximity to other immune cells and cancer 
cells, as stated in previous studies [15]. We identified 
the cytokine TNFSF10 with its receptor TNFRSF10B 
[34], cathepsin G and its receptors PARD3, F2RL1, 
F2RL3 in the ligand-receptor pairs that mediate the 
interaction between mast cells and malignant cells. 
A study as early as 10 years ago found that LGALS9 
increased the stability and function of induced Treg 
cells by directly binding to its receptor CD44 [35]. This 
also partially supports the immunomodulatory role of 
mast cells in CRC.

Mast cells have been recognized as independent prog-
nostic markers of cancer for many years [36]. How-
ever, no drug targeting mast cells alone and selectively 
has been reported [37]. Recent studies have suggested 
the inclusion of molecular markers of immune cells 
involved in CRC progression to aid cancer prognosis 
and patient follow-up during treatment [38]. For this 
reason, we extracted mast cell markers and used bulk 
RNA-seq analysis to identify the biomarkers that play 
a role in CRC prognosis. Although this approach does 
not fully probe the complexity of mast cell mechanisms 
in CRC, it is a first step towards targeting mast cells for 

therapeutic CRC analysis. 6 of the mast cell markers were 
selected to construct a prognostic classification model, 
including HDC, GATA2, ASAH1, BTBD19, TIMP1, 
and FAM110A. In addition to identifying the prognosis 
of CRC patients, the classification model also identified 
the immunosuppressive microenvironment in the high-
risk group. On a single molecule basis of the classifica-
tion model, mast cells are the major source of HDC in 
humans, which are underexpressed and exert anticancer 
efficacy in experimental tumor models [39, 40]. GATA2 is 
highly expressed in CRC cells, and knockdown of GATA2 
inhibits the proliferation, invasion, EMT and cancer 
stemness of CRC cells [41]. ASAH1 is overexpressed in 
human CRC cases, and silencing its expression leads to 
immune cell death and induction of mitochondrial stress 
[42]. Hermann’s study found that systemic upregulation 
of TIMP1 in male pancreatic cancer patients was asso-
ciated with shortened survival time and increased liver 
metastases, and noted that this phenomenon of high 
TIMP1 levels was also present in male CRC patients 
[43]. In this study, we observed that HDC were very low 
expressed in mouse tumor mast cells, while BTBD19, 
FAM110A, GATA2, ASAH1 and TIMP1 showed exces-
sive expression in mouse tumor mast cells. We also 
knocked down GATA2 in the co-culture system formed 

Fig. 7  Expression and pathological function of the molecules in the classification model in CRC cells. A-F The mRNA levels of molecules 
in the classification model detected by qRT-PCR between MC-9 cells and P815 cells, including HDC, ASAH1, BTBD19, FAM110A, TIMP1 and GATA2. 
G Wound area images and would closure rate for si-GATA2 and control groups in co-culture system of MC38 and P815 cells. H Cell invasion 
of si-GATA2 and control in co-culture system of MC38 and P815 cells
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by CRC cells and tumor mast cells, which resulted in the 
suppression of cell migration and invasion.

Limitations of this study were also listed. Firstly, spa-
tial information cannot be probed from single-cell data, 
which leads to a one-sided understanding of cell func-
tions and the tumor microenvironment. A combination 
of sequencing methods including batch sequencing, 
spatial transcriptomics, and single-cell sequencing tech-
nologies may be a solution and a future direction [27, 
44]. Secondly, the loss of some cell populations may have 
biased the results. Therefore, the observed effects might 
be influenced by unconsidered factors, such as the pres-
ence or absence of other immune cell types and the het-
erogeneity within the mast cell population. In the future, 
it is necessary to validate the existing findings in larger 
and independent cohorts, incorporate more diverse 
samples to eliminate the risks of sample size and selec-
tion bias, and strengthen the robustness of the conclu-
sions. Finally, this study only verified the function of one 
molecule in the classification model and lacked more 
experimental verification, which led to the limited prac-
tical application value of the research conclusions. In 
the future, it’s essential to apply mouse models s in vivo, 
observe their impact on tumor growth, metastasis and 
host immune responses, and obtain data via histologi-
cal analysis and biomarker detection. Also, we’ll closely 
collaborate with clinical studies. We’ll collect extensive 
samples from diverse CRC patients, including different 
subtypes, stages, and genetic backgrounds, to expand 
marker gene validation.

In summary, this study identified 9 specific  cell types 
within CRC, elaborated on the cellular functions and 
interactions with malignant cells of mast cells in CRC 
development, and highlighted the molecular components 
and biological features that constitute a promising prog-
nostic classification model.
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