
Molaei and Jalili  BMC Medical Genomics           (2025) 18:73  
https://doi.org/10.1186/s12920-025-02109-4

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Medical Genomics

Disease candidate genes prediction using 
positive labeled and unlabeled instances
Sepideh Molaei1 and Saeed Jalili1* 

Abstract 

Identifying disease genes and understanding their performance is critical in producing drugs for genetic diseases. 
Nowadays, laboratory approaches are not only used for disease gene identification but also using computational 
approaches like machine learning are becoming considerable for this purpose. In machine learning methods, 
researchers can only use two data types (disease genes and unknown genes) to predict disease candidate genes. 
Notably, there is no source for the negative data set. The proposed method is a two-step process: The first step 
is the extraction of reliable negative genes from a set of unlabeled genes by one-class learning and a filter based 
on distance indicators from known disease genes; this step is performed separately for each disease. The second step 
is the learning of a binary model using causing genes of each disease as a positive learning set and the reliable nega-
tive genes extracted from that disease. Each gene in the unlabeled gene’s production and ranking step is assigned 
a normalized score using two filters and a learned model. Consequently, disease genes are predicted and ranked. The 
proposed method evaluation of various six diseases and Cancer class indicates better results than other studies.

Keywords Disease gene prediction, Positive-unlabeled learning, Gene expression profile, Score relevance, Support 
vector machine

Introduction
Genes are the factors of inherited and genetic disorders 
that can path through into future generations. Also, 
they can be hidden and may be revealed in the future. 
Hence, genetic disease treatment or prevention has been 
challenging for physicians and health researchers from 
the past to now. Thereby, predicting disease genes and 
understanding their mechanisms is the first critical step 
in pharmacology and medicine for treatment and preven-
tion. Today, new studies have significantly enhanced for 
finding the disease’s molecular basis to prevent, diagnose, 
and treat genetic diseases.

The utilization of machine learning methods to solve 
various problems has shown promising performance 

compared to traditional and experimental methods. In 
particular, machine learning techniques in medicine have 
attracted significant attention. Experimental and labo-
ratory-based methods for solving medical problems are 
often cost-intensive and time-consuming, which has led 
to a growing interest in computational methods, includ-
ing machine learning. Furthermore, while some genes are 
classified as non-disease genes, they may be identified 
as disease-related in different contexts. This complexity 
has made it difficult to definitively classify non-disease 
genes, as knowledge in this area remains limited. How-
ever, recent studies have shown that some human genes 
play a role in diseases and can be valuable for predicting 
disease-related genes using machine learning methods.

In predicting and ranking disease genes using machine 
learning, the disease-known genes are considered a posi-
tive data set, and unknown genes are considered unla-
beled genes. Prediction and labeling the genes causing 
a disease (based on ranking) among the unknown genes 
using that disease’s known genes is the purpose of this 
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issue. Due to the data nature, one of the most proper 
solving methods of this issue (which consists of the data’s 
nature) is the Positive Unlabeled Learning (PU-Learning) 
approach [1]. The PU-Learning method is semi-super-
vised; this method is used for binary classes with positive 
labeled and unlabeled samples. This type of learning has 
no negative labeled samples, and it distinguishes it from 
other learning types. The available data in this type of 
learning is as two following types: (i) data set including 
positive labeled samples; (ii) data set without label that 
potentially can be the cause of the disease (positive) or 
non-disease (negative). The studies regarding solving this 
issue with the PU-Learning approach are classified into 
two general approaches: 1) Identifying negative samples 
approach; 2) not identifying negative samples approach.

The negative genes (non-disease) are initially selected 
among the unlabeled genes in the identifying negative 
samples approach. Next, binary models are learned sep-
arately for each disease using data set containing genes 
causing that disease (with positive label) and non-disease 
genes (with negative genes). Selecting reliable negative 
genes is the main challenge in this strategy. The more 
reliable they are the learning will be accurate in the next 
step. In the not identifying negative samples approach, 
learning of one class is only carried out using positive 
samples. This method will be useful if the number of pos-
itive samples is ample and sufficient.

Moreover, the efficiency of this method is very low if 
the number of positive samples is insufficient [2] or the 
entire unlabeled genes consider negative samples. Con-
sequently, the problem will be changed to an unbalanced 
binary classification, and then binary models will be 
learned. Since the dataset of unlabeled genes is included 
potential negative and positive samples, utilization of this 
method have high error. Recently, the use of this method 
has been reduced [3].

The extraction of reliable negative genes in the pro-
posed method is as follows: negative genes extraction is 
carried out separately for each disease in the one-class 
learning step. Then, the most distant negative genes from 
known disease genes are selected. Indeed, designing reli-
able negative gene extraction in such a way will enhance 
the trust in extracted negative genes. Disease genes will 
be selected separately for each disease in the binary 
model learning step based on the proposed method’s 
designed scoring system. The score-relevance indicator 
is used for this purpose. The score of each disease gene 
is normalized using a scoring system. Then, it is decided 
whether or not to select any disease gene as positive edu-
cational data based on the score of each gene. Eventually, 
a binary disease model is learned using the Support Vec-
tor Machine (SVM) algorithm. The other two filters are 

used in the unlabeled genes’ prediction and ranking step 
after determining the sample’s label using the learned 
binary model. These two filters are based on: 1) each 
gene’s distance from the support vector; 2) the closeness 
of the gene to disease genes. A normalized score is laid 
out for each gene using the designed scoring system in 
the proposed method and the distance of every unla-
beled gene from the disease binary model’s support vec-
tors. Next, another score is laid out for each gene using 
a designed scoring system and score relevance related to 
every unlabeled gene. Eventually, a single score for each 
gene is obtained by formulating scores. Then, the deci-
sion is made for the unlabeled gene (in other words, 
whether the gene is a candidate for the disease or not). 
Besides, the rank of the gene is determined if it is a candi-
date for the disease. The outcomes of evaluating the pro-
posed method compared to the best previous available 
proposed method are as follows:

The recall measure of Adrenal, Colon, Lung, Prostate, 
and Heart Failure diseases and Cancer disease class are 
increased by 0.53%, 5.32%, 1.29%, 3.33%, 4.04%, and 
3.11%, respectively. Moreover, the increase of precision 
measure is 2.64%, 2.14%, 1.75%, 3.14%, 3.13%, and 2.38%, 
respectively. The increase of AUC measure for Neurolog-
ical disease is 8.82% compared to other studies.

Basic concepts
Gene expression profile (GEP)
Gene expression data provides valuable information 
regarding cellular situations, biological networks, and 
understanding of genes’ performance. Indeed, the genetic 
codes have been stored in DNA strands. Furthermore, 
they will interpret by gene expression. Determining how 
genes are expressed in non-disease and diseased cells is 
one of the purposes of gene expression interpretation. 
Scientists utilize DNA microarray (biochips) to measure 
gene expression amount. A set of gene expression samples 
is the result of determining the gene expression amount’s 
experiment. Every row in the gene expression matrix indi-
cates the related gene expression profile. Time series of 
gene expression profiles (which state the gene expression 
level in determining periods) are used in this study.

Similarity‑based communication principle
Similarity-based communication principle is used in 
most disease candidate gene prediction problem-solv-
ing methods. The mentioned principle declares that the 
greater the physical and performance similarity of genes, 
the greater the probability of their role in developing the 
same diseases. The closeness amount to the disease genes 
can be used as a rank.
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Score relevance
The scores for each gene based on Score-Relevance can 
be considered a score for the effectiveness of that gene 
in the specific disease formation. Indeed, the mentioned 
scores are based on the simultaneous presence of two ele-
ments in the Medline1 document. This score is based on 
a formula (the base of this formula is the Boleyn model) 
and is calculated for finding coincident documents and 
their conformity amount. Overall, the mentioned for-
mula has used the concepts of Term Frequency-Inverse 
Document Frequency (TF-IDF), Vector Space, Coordina-
tion factor, and field length normalization [4].

Comparing the number of documents in which two 
elements are present next to each other and the number 
of documents in which elements independently appear 
with the expected amount is carried out based on the 
hypergeometric distribution. The greater the simulta-
neous presence of elements (compared to the expected 
amount) will reduce the random occurrence of this hap-
pen. Consequently, the scores will enhance [5]. Unfor-
tunately, these scores are not significant absolutely and 
only are sequentially significant in the related genes list of 
each disease and have particular importance. Moreover, 
the absolute amounts of scores may vary from one ver-
sion to another version.

Research history
The previous studies regarding disease candidate gene 
prediction are introduced in two groups.

Identifying negative samples approach
Yousef and Moghadam [6] used proteins’ amino acid 
sequences for predicting and ranking the diseases’ genes. 
They construct four various characteristic vectors using 
amino acid sequences. Moreover, they use cosine dis-
tance for extracting reliable negative genes. Eventually, 
the characteristics of a model are learned separately for 
each vector. The results of every category are integrated, 
and the final result will be announced.

VasighiZaker and Jalili [7] presented the C-PUGP method. 
In this method, the clustering of positive samples is con-
sidered initially. Next, a one-class model with an OCSVM 
learning algorithm is carried out for every cluster. Labeling 
of unlabeled samples is performed using learned models. 
Then, the unlabeled gene, which gives a negative label based 
on the entire one-class models, is considered a reliable nega-
tive sample. Finally, the SVM binary model is learned using 
the obtained negative samples and initial positive samples. 
Many initial studies considered the entire unlabeled genes 

as negative samples and learned a binary model. Since the 
dataset of unlabeled genes is included negative and posi-
tive samples, utilization of this method have high error. 
Smalter et  al. [8] predicted disease candidate genes using 
the protein–protein interaction dataset and SVM binary 
model. Radivojac et al. [9] used three various datasets and 
learned an SVM binary model for every dataset. They iden-
tify disease candidate genes using these three disease binary 
models’ results. The used datasets were protein sequences, 
protein performance information, and the PPI network.

Not identifying negative samples approach
Learning is carried out only with positive samples in this 
method. The efficiency of this method is very low if the 
number of positive samples is insufficient [2]. Yousef and 
Moghadam [10] identified disease genes using the SVDD 
one-class model (only by using the sequences of disease 
genes). This method generates the characteristic vector 
by converting protein consequences to numerical vectors 
using their physicochemical properties translation. Then, 
they reduced the characteristics sizes to find the criti-
cal characteristics using Principal Component Analysis 
(PCA). The disease genes (positive samples) are learned 
using SVDD one-class model in the next step. The unla-
beled samples will predict using the learned model. The 
entire disease genes are initially considered a positive set 
in the method of VasighiZaker and Jalili [11]. This set will 
normalize by the Min–Max method. Then, the number of 
the characteristic will reduce using the PCA method. Next, 
the learning is performed by OCSVM one-class model. 
The unlabeled genes are labeled after finding the optimal 
parameters. Nikdel and Jalili [12] studied the clustering of 
disease genes based on a constructed matrix by measuring 
semantic similarity among the disease types; this is carried 
out based on the gene ontology. Next, the Hidden Markov 
Model (HMM) is learned for each cluster; a threshold is 
calculated for each cluster separately. The unlabeled genes 
are given to the entire learned hidden Markov models of 
that disease. The label of that gene will identify given the 
probability obtained from each hidden Markov model and 
calculated threshold for each cluster. In other words, if at 
least one of the hidden Markov models (among the entire 
learned hidden Markov models of that disease) considers 
an unlabeled gene as a disease candidate, the positive label 
is attributed to that gene. After normalizing gene expres-
sion data, Vasighizaker et al. [13] used a one-class support 
vector machine model with a linear kernel for predicting 
disease genes in Acute Myeloid Leukemia (AML) cancer.

The proposed method
The scoring-based method using the SVM binary model 
is introduced to solve the prediction and ranking prob-
lem of disease candidate genes; this method scores 

1 It is one of the most famous free databases worldwide and includes biblio-
graphic research information for the entire medical and biology fields.
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effective factors in predicting and ranking disease candi-
date genes. The main aim of this method is disease can-
didate genes prediction and ranking from an unlabeled 
gene set. The higher priority belongs to the gene more 
likely to belong to the disease candidate genes group. 
Unlabeled genes are human genome that does not belong 
to disease genes. Notably, determining gene expression is 
performed in various laboratories. Therefore, a gene may 
have more than one gene profile. Consequently, the entire 
calculation is carried out separately for a gene’s profile.

The S-PUL2 proposed method has four following steps: 
1) data normalization; 2) reliable negative genes extrac-
tion; 3) disease binary model learning; 4) disease candi-
date genes prediction and ranking (see Fig. 1). The gene 
expression data is normalized in the first step. In the sec-
ond step, reliable negative genes are extracted from unla-
beled samples separately for every disease. The binary 
model is learned separately for every disease with posi-
tive samples (disease genes) in the third step. In the fourth 
step, reliable negative genes are eliminated from unlabeled 
genes (U). Then, the remaining unlabeled gene set (Rui) is 
given to the disease binary model for label prediction.

The term "S-PUL" stands for Scored-Positive Unla-
beled Learning. It is a combination of two used methods: 
Positive Unlabeled Learning (PUL) and a Scoring system. 
The scoring aspect refers to the integration of a scoring 
system within the Support Vector Machine (SVM) algo-
rithm. This hybrid approach leverages the strengths of 
both techniques to enhance the learning process.

Data normalization step
Each gene’s time expression range is different, and their 
difference is high. The entire data is normalized sepa-
rately for two datasets (disease and unlabeled genes). The 
normalization is carried out based on Eq. 1. The highest 
and lowest amounts of every gene’s time expression are 
indicated by  Xmax and  Xmin in Eq. 1, respectively.

Reliable negative genes selection step
Learning disease binary model, in addition to disease 
genes set (as positive samples), requires reliable nega-
tive genes set (as negative samples). It is evident that the 
accuracy of predicting unlabeled genes by the disease 
binary model (as disease genes) increases with enhancing 
the trust degree in the identified negative genes (among 
unlabeled genes). Figure 2 illustrates the reliable negative 
gene extraction process related to each disease class.

In the first action (i.e., Action 1 Algorithm), the Robust 
Gaussian, KNN, Parzen window, and SVDD one-class 
classification algorithms are used for learning the positive 
samples model separately for each disease class. Moreo-
ver, other disease classes’ genes (after eliminating common 
genes) are used as test data. After learning a disease model, 
other diseases genes are expected to appear in the negative 
data role. Hence, the evaluation indicator to select the best 
learning algorithm is the percentage of considered accurate 
negative samples. Eventually, the learned one-class algo-
rithm that has the highest percentage of accurate negative 
samples is selected as the best one-class model of i-th dis-
ease. In the Action2, unlabeled genes are given to the best 
one-class model as input, and unlabeled genes are labeled. 
The outcome of this step is a set of negative genes. Finally, 
Reliable negative genes are selected from the set of nega-
tive genes in the third step (i.e., Filter1 algorihtm.). The 
shortest Euclidean distance of every negative gene is cal-
culated from its correspondent disease genes. If a disease 
gene expression profile (Ne) from the  NDi set is shown by 
Ne = {d1, d2, d3, . . . , dm} and the negative gene expression 
profile  (Ngi) is shown by Ngi = {n1, n2, n3, . . . , nm} , the 
Euclidean distance is calculated using Eq. 2. Thus, the mini-
mum distance of every negative gene from its correspond-
ent disease genes is calculated based on Eq.  3. Eventually, 
the farthest genes from disease genes are selected as reliable 
negative genes for every disease i  (RNDi).

(1)Xnormalized =
(Xmax − X)

(Xmax − Xmin)

Fig. 1 S-PUL proposed method process

2 Scored-Positive Unlabeled Learning.
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Action1 Algorithm (Learning one-class model of i-th Diseases)

Learning step of the disease binary model
The prediction and ranking problem of disease candidate 
genes are solved based on binary model learning. Figure 3 
indicates the learning process of the disease binary model. 
Selecting the positive training data from the disease genes 
set of every disease is another challenge of this study.

(2)DisEu(Ne,Ngi) =

√

√

√

√

m
∑

k=1

(dk − nk)
2

(3)Nek = min
∀Ne∈NDi

Dis_Eu Ne,Ngi

It is worth noting that the role of genes in the arising of 
disease has different degrees. The reliability of learning 
results will enhance using genes (as training data) that have 
higher correspondent S-R3 values in the learning process. 
The selection of disease genes is performed using S-R for a 
positive training set in this study. The value of S-R related 
to every disease gene (separately for each disease) is avail-
able in [4].

Positive genes selection (Filter 2)
Positive genes of each disease are selected in four steps. 
This process is described step by step in the following 
and presented formally by "Filter 2 algorithm".

In the first step, disease class genes are categorized based 
on their S-R values (separately for each disease). The gene 

Fig. 2 The reliable negative genes extraction process

3 Score Relevance (explained in "Score relevance" section).
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will belong to a higher category by enhancing its S-R value, 
thus obtaining a higher score. The categories with equal 
intervals of ten units will create for categorizing genes 
based on their S-R value. Therefore, the first category is 
related to the genes whose range is [0,10). In other words, 
the first category has the lowest value. Accordingly, each 
gene will belong to a category (the length of these catego-
ries is 10). One of the challenges of this study is determin-
ing the value of these categories’ range. The distribution 
of disease genes number based on the S-R values is not 
uniform. Each category’s range should be determined so 
that it does not lead to the over-elimination of genes. The 
length of 10 for categories is a logical number for the entire 
disease. The mentioned length has been obtained by trial 
and error in this study. Moreover, this number can be cal-
culated more accurately in future studies.

In the second step, every category gets a portion of 100 
points according to its obtained score. In other words, 
the highest percentage will obtain by the highest cat-
egory. The category score related to the i-th category is 
shown by NGri ; this reaches the base of 100. The NGri 
can be calculated by Eq. 4.

The category score of the entire genes belonging to the 
disease is saved in Gr set. In Eq. 4, Max(|Gr|) is the high-
est category score of a gene belong to a disease class; S-Ri 
indicates the S-R value related to the i-th gene of Gr set.

In the third step, the final score of the i-th gene  F_
Scorei is calculated by Eq. 5.

The mean scores range (
−

IL) is calculated based on the 
Eq. 6 (separately to every disease). Moreover, some genes 
are selected as positive training data (their final score 
is over the mean of the scores range). In Eq. 6, the final 
score of the entire genes is in the {F_Score} set.

(4)NGri = (

⌊(

SRi

10

)⌋

+ 1)×
200

Max {|Gr|}(Max {|Gr|} + 1)

(5)F_Scorei = NGri × S − Ri

(6)IL =
Max{F_Score} +Min{F_Score}

2

Filter2 Algorithm (Positive genes selection)

Fig. 3 Learning process of disease binary model
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Positive genes selection (Filter3)
Filter 3 is an optimization step in the proposed method 
designed to eliminate low-significance genes and 
reduce noise in the data. Specifically, this filter removes 
genes that received a negative label from the SVM 
binary model during the learning phase, and have S-R 
values in the lowest scoring range ([0, 10)).

The primary goal of this filter is to focus the learning 
process on genes that are more likely associated with 
the disease, while excluding genes that have the least 
impact on disease formation. By doing so, the learning 
process is refined, and it is expected that the prediction 
accuracy for disease candidate genes will improve.

Binary model learning
In Action3 of Fig.  3, the binary learning using binary 
learning algorithms is performed using selected posi-
tive training genes  (PDi) from i-th disease genes and 
reliable negative genes  (RNDi) from unlabeled genes. 
Eventually, the algorithm that obtains the highest recall 
evaluation value for all diseases is selected.

Disease candidate genes prediction and ranking step
The remaining unlabeled gene sets (i.e., the unlabeled 
genes set that the extracted negative genes are elimi-
nated in that set in Reliable negative genes selection 
step) are given to the disease binary model as test data 
after learning and selecting the best binary learning 
algorithm (SVM) with having the best learning param-
eters. A scoring algorithm is also used in the disease 
candidate prediction and ranking step, as illustrated in 
Fig. 4. There are two critical factors in the scoring algo-
rithm: 1) The distance of every unlabeled gene from the 
disease gene; 2) The distance of every unlabeled gene 
from the support-vector of the i disease model. genes 
give a score based on each mentioned factor. The final 
score of the gene will obtain by multiplying these two 
scores. Eventually, the prediction and ranking are car-
ried out according to the final score.

Action4‑ Identifying the valuable genes
The unlabeled genes given to the i disease (i.e.; the 
extracted reliable negative genes of i-th disease elimi-
nated from the unlabeled genes set; RUi indicates 
this set) are labeled and stored in the DS1 set using 
the i-th disease learning model. Suppose that the 
expression profile of disease gen (Ne) from the  NDi 
set is Ne = {d1, d2, . . . , dm} , and the expression pro-
file of an unlabeled gene (Ru) from the  RUi set is 
Ru = {u1,u2, . . . ,um} . The closet i disease gene (Ne) to 
each Ru studied expression profile from the  RUi dataset 
is identified using Eqs. 2 and 3 (in terms of Euclidean dis-
tance). Moreover, it is stored in the DS2 set. Negatively 
labeled genes are eliminated from the DS1 dataset to pre-
serve valuable genes (separately to each profile). Their 
correspondent S-R values are settled in the DS2 dataset 
of the first category (the least valuable category). The 
remaining genes are stored in the  VRUi dataset. These 
remaining genes are negatively labeled genes with high 
S-R and positive labeled genes that are valuable genes.

Action5‑ The prediction and ranking of disease candidate 
genes
The F_Score value of the nearest disease gene is attrib-
uted to Ru studied gene profile from the  VRUi dataset. 
It is worth noting that the nearest disease gene to each 
studied gene profile is identified in the "Reliable negative 
genes selection step" section and maintained in the DS2 
dataset. In this method, the given label to each Ru studied 
gene is maintained from the  VRUi dataset. Each gene has 
many gene profiles. Thus, the final score of a gene is the 
algebraic summation of scores of that gene’s profiles. The 
output of this step is the DS3 dataset, which contains the 
entire valuable genes input from the  VRUi to this step, 
along with the second score of each gene ( DP_Scorei ). It 
is worth noting that the reliability of the sample belong-
ing to the i disease class increases with enhancing the 
distance of the tested sample from the support vectors of 
the i disease model. In contrast, the reliability of the sam-
ple belonging to the i disease class reduces by reducing 

Fig. 4 The prediction and ranking process of disease candidate genes
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the distance of the tested sample from the support vec-
tors of the i disease model. Consequently, the gene score 
will increase by distancing the studied gene  (VRUi) from 
the support vectors of i disease in the calculation of the 
second score of each gene ( DS_Scorei ). The calculation of 
the third score is carried out in three steps.

In the first step, the value of Grsv parameter for i-th 
gene from positive and negative labeled genes are consid-
ered ⌊DSi⌋ + 1 value and ⌊DSi⌋ value, respectively. Grsv is 
the category’s score, including the ith gene, and  DSi is the 
distance of the i-th gene from the Support Vector.

In the second step, the Eq.  7  is used to calculate the 
value of NGrsvi ; it is the category’s score of the i-th gene 
( Grsvi ). The mentioned score has reached the base of 100. 
The category’s score of all genes belonging to the disease 
is in the {Grsv} set.

In the third step, the final correspondent score with the 
i-th gene DS_Scorei is calculated by Eq. 8.

The second and third scores are simultaneously used 
for predicting and ranking disease candidate genes. Each 
gene may have several profiles in the unlabeled genes 
dataset. Thus, each gene obtains a score based on its pro-
file number. The final score for that gene is obtained from 
the algebraic summation of gene profiles.

The final score of the studied gene ( Final_Scorei ) is 
calculated based on the Eq. 9 with the algebraic summa-
tion of gene profiles’ scores ( DP_Scorei and DS_Scorei 
for each profile of that gene). The prediction of disease 
candidate genes is carried out based on the score of 
each gene.

The number of gene profiles is indicated by m in Eq. 9.
Finally, genes whose Final_Score values are negative 

will eliminate; other genes are predicted as disease candi-
date genes. The obtained final score of each disease can-
didate gene is used for ranking.

Results
The efficiency of the S-PUL method is evaluated in six ver-
sions, namely S-PUL_Vn in this section. The number of 
S-PUL versions and used filters in that version are reported 
in Table 1. It is worth noting that the version of S-PUL_V5 
is the proposed S-PUL method, which uses all filters.

(7)NGrsvi = Grsvi ×
200

Max {|Grsv|}(Max {|Grsv|} + 1)

(8)DS_Scorei = NGrsvi × |DSi|

(9)Final_Scorei =

m
∑

i=1

(DS_Scorei × |DP_Scorei|)

The efficiency of the S-PUL method results (separately 
for each version) is compared with the previous studies. 
Finally, this method’s efficiency is evaluated separately in 
2016 and 2020 using the newly identified disease genes. 
The MATLAB Software (2019 version) is used for learn-
ing binary classification and calculation. Moreover, the 
dd-tools library is used for learning one-class models. 
The entire evaluation is carried out on a computer with 
an Intel Core TM i5 processor and main memory of 
32 GB in Windows 10 pro.

Dataset
The used genes in the learning and testing phases are 
extracted from the dataset of Yang et al. (2014) [14] (the 
second row of Table  2). The dataset for the Cancer dis-
ease class has 210 genes, these 210 genes are common 
among the three diseases: colon, prostate, and lung (the 
number of disease genes is provided in Table 8), and the 
dataset of unlabeled genes has 12,001 genes. GeneCards 
[4] (the third and fourth rows of Table 2) are used for the 
dataset of disease genes from 2015 to 2020. The charac-
teristics of disease genes are represented in Table 2 sepa-
rately for each disease and period. Notably, each disease 
gene may be the cause of several diseases.

Evaluation measures
The accuracy, recall  F1, and AUC measures (area under 
the ROC curve, which is the changes of TPR to FPR) are 
used to evaluate the S-PUL method). The mentioned 
measures are defined in Table 3. In these equations: the 
TP parameter is the number of positive samples that are 
categorized correctly; the TN parameter is the number of 
negative samples that are categorized correctly; the FP is 
the number of negative samples that are categorized as 
positive incorrectly (in other words, the number of spuri-
ous positive samples); the FN is the number of positive 
samples that are categorized as negative incorrectly (in 
other words, the number of spurious negative samples); 
the TPR is the correct positive rate; FPR is the spurious 
positive rate. This study has considered disease genes as 
positive samples and extracted negative samples from 

Table 1 The used filters in the versions of the S-PUL proposed 
method

S‑PUL_
Version

Filter 1 Filter 2 Filter 3 Second 
Score

Third Score

S‑PUL_V0 ✓
S‑PUL_V1 ✓ ✓
S‑PUL_V2 ✓ ✓ ✓
S‑PUL_V3 ✓ ✓ ✓ ✓
S‑PUL_V4 ✓ ✓ ✓ ✓
S‑PUL_V5 ✓ ✓ ✓ ✓ ✓
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unlabeled genes. All evaluations are performed with 
K-fold C.V and k = 10.

The evaluation of extracted reliable negative genes
The extraction of reliable negative genes is carried out in 
two steps (extraction of negative genes using a one-class 
learning algorithm and selecting reliable negative genes 
using distance measure). The quality of reliable negative 
genes extraction is evaluated at each step.

Selecting the one‑class learning algorithm
Negative genes are initially extracted separately for each 
disease to select the one-class learning algorithm and 
each one-class classification learning algorithm of SVDD, 
Robust Gaussian, KNN, and Parzen Window (the first 
and second steps in Reliable negative genes selection 
step). Each algorithm’s parameters and a brief introduc-
tion are provided below, with references for detailed 
explanations.

Support Vector Data Description (SVDD) is a machine 
learning algorithm used for anomaly detection and clas-
sification. It constructs a sphere in the feature space that 
encompasses the training data. The parameter used in 
this algorithm is the width parameter in the RBF kernel 
[15].

Robust Gaussian is an algorithm that models data dis-
tribution as a Gaussian distribution and employs robust 
statistics to handle outliers. The parameter for this algo-
rithm is the error tolerance on the mean and covariance 
matrix [16].

K-Nearest Neighbors (KNN) is an instance-based algo-
rithm that classifies data based on the distances to the 
k-nearest neighbors. The parameter for this algorithm is 
the number of neighbors [17].

Parzen Window is a non-parametric method for esti-
mating the probability density function of a dataset using 
kernel functions. The parameter for this algorithm is the 
width parameter [18].

Then, each one-class learning algorithm’s efficiency is 
examined through two evaluation methods.

The first evaluation method: The percentage of cor-
rect negative samples (%TN) is considered the evalua-
tion method in the first method. The selected parameters 
of each one-class learning algorithm are presented in 
Table  4. The error value on the target class (Fracrej) 
parameter considers 0.1 for all one-class learning algo-
rithms. The efficiency results of each one-class learning 
algorithm are reported in Table 5.

The first evaluation method
The percentage of correct negative samples (%TN) is 
considered the evaluation method in the first method. 
The selected parameters of each one-class learning algo-
rithm are presented in Table  4. The error value on the 
target class (Fracrej) parameter considers 0.1 for all one-
class learning algorithms. The efficiency results of each 
one-class learning algorithm are reported in Table 5.

Table 2 Characteristics of genes expression profile datasets

The name of the disease class Cancer  Endocrine Cardiovascular  Neurological 

The name of the disease Colon Lung Prostate Adrenal Heart Failure  Neurological  Row number 

Sequence length of gene expression profiles 18 18 5 37 9 42 1

Biologists [14]
Number of disease genes by 2014

342 245 325 81 107 219 2

Biologists [4]
Number of new disease genes from 2015 to 2016

240 - 191 9 - - 3

Biologists [4]
Number of new disease genes from 2017 to 2020

56 27 67 29 58 16 4

Total known disease genes 638 272 583 119 165 235 5

Table 3 The relations of evaluation measures

A. Precision measure – this measure indicates the percentage of positive 
predictions that are performed correctly. Moreover, this measure is calculated 
from Eq. 18 in Table 3

B. Recall measure – this measure indicates the percentage of positive samples 
that are categorized correctly. Moreover, this measure is calculated from 
Eq. 19 in Table 3

C.  F1 measure – it is a compatible mean between precision and recall. Moreover, 
this measure is calculated from Eq. 20 in Table 3. Additionally, R symbol refers to 
recall and P symbol refers to precision

D. Trust in Negative Genes (TNG) measure – this measure is used for trust 
value in extracted negative genes measurement in unlabeled genes. Indeed, it 
compares the extracted negative genes and disease-known genes from 2014 
to 2020. The trust value in negative genes is calculated from Eq. 21 in Table 3. 
In Eq. 21, A is the number of extracted negative genes, the B parameter is the 
number of available common genes in the disease genes list from 2014 to 2020 
and extracted negative genes

Equation 
number

Equation  Equation 
number

Equation 

18 Precision = TP

TP+FP
∗ 100 19 Recall = TP

TP+FN
∗ 100

20 F1 =
2∗P∗R
P+R

21 TNG = A−B

A
∗ 100

22 TPR = TP

TP+FN
23 FPR = FP

FP+TN
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The highest efficiency of the one-class learning algo-
rithm is related to SVDD. SVDD labeled the most percent-
age of negative samples for the entire types of diseases.

The second evaluation method
In this evaluation method, the efficiency of the S-PUL_
V5 learning method is learned using considered positive 
disease genes separately for each extracted reliable nega-
tive genes set for each one-class learning algorithm (Reli-
able negative genes selection step). The results of this 
evaluation are illustrated in Fig. (5a to f ) for each disease 
separately. It is worth noting that the number of selected 
reliable negative genes for each disease is equal to the 
number of disease genes; this prevents the unbalanced 
problem of positive and negative data).

According to Fig.  5, the highest efficiency is related 
to the S-PUL_V5 method if reliable negative genes are 
extracted using the SVDD method (compared to the 
other three one-class learning algorithms).

Measuring the trust degree in the extracted negative genes
According to Eq.  21, the trust degree in negative genes 
is extracted by the SVDD algorithm for each disease 

separately (see Table 6); it demonstrates that the reliability 
of extracted negative genes by the SVDD algorithm is high.

Evaluation of the binary classification algorithms 
performance and selection of the disease genes
Table  7 reports the parametrization for learning algo-
rithm and disease separately. Moreover, Table 8 presents 
used disease genes information in the binary models 
learning for each disease individually.

The efficiency evaluation of five binary classification 
algorithm results is illustrated in Fig.  6 in the filtered/ 
unfiltered status of disease genes.

Figure 6 indicates the evaluation results. The recall meas-
ure increased using S-PUL-V1 compared to the efficiency 
evaluation of S-PUL_V0 classification algorithms. The 
precision and, subsequently, the  F1 measures increase if it 
does not affect the recall measure. Hence, the filtering dis-
ease genes method in the S-PUL method will be used. Fur-
thermore, the efficiency of the SVM binary model learning 
algorithm is more than other algorithms (see Fig.  6). 
Hence, the SVM binary classification method in the S-PUL 
method will be used. Table 9 indicates the value of the used 
parameter in the SVM learning algorithm. If the kernel is a 

Table 4 The selected parameters for each one-class learning algorithm separately for each disease

1 Width parameter 
2 Error tolerance on mean and cov. Matrix
3 Number of neighbors
4 Width parameter in the RBF kernel

The name of the 
disease ↓

Algorithm
→

SVDD  KNN Robust Gaussian  ParzenWindow

Parameter
→

ɤ4 kernel 3K 2Tol 1h

Adrenal 0.14 RBF 2 e-3 1

Colon 0.14 RBF 1 0.015 1.2

Lung 0.3 RBF 2 e-3 1

Prostate 0.2 RBF 1 e-3 1

Heart Failure 0.14 RBF 2 e-3 0.9

Neurological 0.14 RBF 2 0.005 1 

Table 5 The results of one-class learning algorithms efficiency evaluation in the extraction of reliable negative genes based on the 
percentage of correct negative samples measure (%TN)

The name of the disease 
↓

Algorithm
→

SVDD KNN Robust Gaussian Parzen Window

Adrenal 89.5% 73% 74.8% 52.7%

Colon 82.1% 75.8% 12.6% 35.1%

Lung 84% 80% 19.4% 64% 

Prostate 82.6% 69.3% 71% 72%

Heart Failure 78.4% 75.7% 37% 42.8%

Neurological 71% 42.62% 49.5% 68.7%
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quadratic function, γ parameter is set to the one divided by 
the number of features (1/ number of features).

The evaluation of disease candidate genes prediction 
and ranking
The efficiency of disease candidate genes prediction and 
ranking is examined in this section for implementing fil-
ter 3, using the second and third scores separately.

The evaluation of selecting valuable genes efficiency (filter 3)
This section assesses the elimination of genes given a 
negative label by the SVM binary learning algorithm, and 
their S-R is in the first category ([0,10) range). The statis-
tics of eliminated genes based on their related S-R range 
are presented in Table 10 for each disease.

Figure 7 illustrates the evaluation results of the S-PUL_
V2 version (by implementing filter 3) compared to the 
S-PUL_V1 version (without implementing filter 3) to 
evaluate the filter 3 implementation value.

According to Fig. 7, by implementing filter 3, the recall 
measure of S-PUL_V2 increases in all diseases. Contrary, 
without implementing filter 3, the recall measure reduces 
in all diseases. The highest and lowest increase in recall 
measures in S-PUL_V2 is related to Lung disease (7.40%) 
and Colon disease (0.67%), respectively. Therefore, filter 3 
will be used in the S-PUL method.

The efficiency evaluation of utilizing the second genes 
of the VRU set
Every gene has several gene expression profiles. Thus, in 
the S-PUL_V1, the gene will be considered a disease can-
didate gene if at least one of its gene expression profiles 

Fig. 5 The results of one-class learning algorithm efficiency evaluation in the extraction of reliable negative genes based on the efficiency 
of the S-PUL_V5 method

Table 6 The trust degree in extracted negative genes (TNG) 
using the SVDD method

1 Parameter A represents the number of extracted negative genes
2 Parameter B represents the number of common samples between the two sets 
of disease genes from the years 2014 to 2020 and the set of extracted negative 
genes

The name of the disease Parameter B2 Parameter A1 TNG

Adrenal 0 77 100%

Colon 2 323 99.38%

Lung 12 191 93.71%

Prostate 16 268 94.02%

Heart Failure 2 101 98.01%

Neurological 7 151 95.36%
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Table 7 The values of parameters for learning algorithm and disease separately

The name of the 
disease ↓

Algorithm → Logistic Regression KNN Decision Tree Discriminative

Parameter → Distribution Size K ɵ Type δ

Adrenal Binomial 1 1 0.25 Quadratic 0

Colon Binomial 1 1 0.25 Linear 0.11

Lung Binomial 1 2 0.32 Quadratic 0

Prostate Binomial 1 1 0.25 Linear 0.14

Heart Failure Binomial 1 2 0.24 Quadratic 0

Neurological Binomial 1 2 0.30 Quadratic 0

Table 8 Disease genes information for each disease

The name of the disease Number of disease genes 
before filtering

S‑R range S‑R rating range S‑R score 
threshold

Number of disease 
genes after 
filtering

Adrenal 81 [0.08 , 108.21] [0.12 , 1803.5] 901.68 77

Colon 342 [0.14 , 225.43] [0.05 , 1878.583] 939.26 323

Lung 245 [0.1 , 216.63] [0.03 , 1883.739] 941.84 191

Prostate 325 [0.1 , 251.1] [0.02 , 1860] 929.98 268

Heart Failure 107 [0.12 , 109.44] [0.18 , 1824] 911.90 101

Neurological 219 [0.07 , 42.06] [0.46 , 1402] 700.76 151

Fig. 6 The results of efficiency evaluation of binary classification algorithms for disease genes filtering (S-PUL_V1) and non-filtering (S-PUL-V0)
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obtains a positive label. Consequently, the number of 
spurious positive samples is very high. Therefore, the 
method for reducing the number of spurious positive 
samples is presented in "Action5- The prediction and 
ranking of disease candidate genes" section.

Figure  8 illustrates the results of S-PUL_V3 version 
efficiency in disease candidate genes ranking using the 
second score (“Action5- The prediction and ranking of 
disease candidate genes” section). According to these 
figures, the precision measure value enhances in the V3 
version while recall is maintained. Moreover, Table  11 
reports statistical information of the second score imple-
mentation in “Action5- The prediction and ranking of 
disease candidate genes” section  for each disease and 
unlabeled gene number (which is introduced as a disease 
gene in this step).

The efficiency evaluation of using the third score of VRU set 
genes
Another measure (the third score) is used in “Action5- 
The prediction and ranking of disease candidate genes" 
section  to reduce the number of spurious positive sam-
ples; this measure is calculated from the distance of the 
unlabeled gene for the support vector.

Table 9 Setting parameters of the SVM learning algorithm with 
polynomial kernel for each disease separately

The name of the disease Parameter C Parameter γ

Colon 15.33 0.14

Lung 16.43 0.14

Prostate 9.20 0.2

Adrenal 8.75 0.14

Heart Failure 13.61 0.14

Neurological 11.52 0.14

Table 10 Statistics of eliminated genes (genes having negative 
labels and being in the first S-R category)

The name of the disease S‑R range Number of 
deletion 
genes

Adrenal [0.08 , 10) 68

Colon [0.06 , 10) 51

Lung [0.1 , 10) 21

Prostate [0.1 , 10) 37

Heart Failure [0.12 , 10) 48

Neurological [0.07 , 10) 28

Fig. 7 The results of the S-PUL_V2 version evaluation (by implementing filter 3) compared to the S-PUL_V1 version (without implementing filter 3) 
for each disease
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Figure  8 demonstrates the results of the S-PUL_V4 
efficiency evaluation in disease candidate genes rank-
ing using the third score. According to the figures, the 
entire evaluation measures increased in the V4 version. 
The highest and lowest increase value of recall measures 
is in Adrenal disease (2.52%) and Lung disease (0.19%), 
respectively. Further, the highest and lowest increase 
value of the precision measure is in the Adrenal disease 
(17%) and Colon disease (4.02%), respectively. Based 
on the results, using the third score in the V4 version 
(compared to the V2 version) dramatically increases the 
precision measure with maintaining the recall measure. 

Additionally, Table  12 reports the statistical informa-
tion of the third score implementation in “Action5- The 
prediction and ranking of disease candidate genes" sec-
tion for each disease and unlabeled gene number (intro-
duced as the disease gene in this step).

The evaluation of the S‑PUL method efficiency
Figure  8 illustrates the results of the efficiency evalua-
tion of the S-PUL method (introduced in Table 1 with the 
S-PUL_V5 version) in disease candidate genes ranking 
using 1 and 2 filters in the learning step and using filter 

Fig. 8 The evaluation and comparing results of S-PUL of the V2 version (with implementing filter 3), V3 version (using the second score), V4 version 
(using the third score), and V5 version (using both second and third scores) in the prediction and ranking of disease genes

Table 11 Statistical information of the second score implementation in "Action5- The prediction and ranking of disease candidate 
genes" section for each disease

The name of the disease S‑R range Score range Number of candidate 
disease genes

The second score 
range of disease 
genes

Adrenal [2.98 , 108.21] [4.51 , 1803.5] 46 [4.52 , 116.15]

Colon [2.53 , 204.15] [3.83 , 6495.6] 332 [1.11 , 2244.57]

Lung [9.57 , 164.87] [3.78 , 1107.8] 28 [6.47 , 2285.45]

Prostate [10.09 , 102.672] [6.20 , 347.4] 274 [36.09 , 4246.79]

Heart Failure [4.45 , 72.04] [6.74 , 873.21] 66 [13.52 , 1600.88]

Neurological [1.79 , 29.05] [11.93 , 581] 20 [30 , 1452.5]
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3 and both second and third scores compared to V2, V3, 
and V4 versions. According to the figures, all of the evalu-
ation measures are enhanced in the V5 version compared 
to V2, V3, and V4 versions. The precision measure in 
Adrenal, Colon, Lung, Prostate, Heart Failure and Neu-
rological diseases is enhanced by 12.48%, 13.78%, 17.68%, 
22.31%, and 5.38%, respectively; besides, the recall meas-
ure for these diseases is increased by 2.52%, 1.47%, 7.6%, 
1.84%, 6.11%, and 6.94%, respectively.

Comparing the efficiency of the S‑PUL proposed method 
with other methods
The efficiency of the S-PUL proposed method is com-
pared with previous methods in this section.

Table 13 reports the efficiency results of the proposed 
method compared to the [12] study. The recall measure is 
increased in Colon and Prostate diseases for all versions 
of the S-PUL method and Lung disease in the V5 ver-
sion of the S-PUL method. The reason for comparing the 
results of S_PUL only with Reference [12] in Table 13 is 
due to the fact that these particular diseases were exclu-
sively studied in that reference. However, from Tables 14, 
15, 16 and 17, the diseases are common among various 
studies, allowing for comparisons across multiple refer-
ences. The values of precision and recall are enhanced 
in the V5 version of the S-PUL method of each illness. 
The recall measure’s highest and lowest increase values 
are in Colon disease (5.32%) and Lung disease (1.29%), 
respectively. The precision measure’s highest and lowest 
increase values are in Prostate disease (3.14%) and Lung 
disease (1.75%).

According to Table 14, the precision and recall meas-
ures values for Cardiovascular disease class, including 
Heart Failure disease in the V5 version of the S-PUL 
method, are increased by 4.04% and 3.13%, respectively, 
compared to the [12] study. Recall measure in both V3 
and V4 versions of the S-PUL method is increased by 
0.59% and 2.32%, respectively, compared to the [12] 
study. The highest value of the recall measure is reported 

in the ProDige [19] study among the previous methods. 
The mentioned measure is increased by 0.25% and 1.97% 
in the V3 and V5 versions of the S-PUL method, respec-
tively. The  F1 measure in all S-PUL versions is increased 
compared to previous studies, except for the [12] and 
EPU [14] studies.

According to Table  15, the recall value for Endocrine 
disease class (including Adrenal disease) increased by 
0.53% in all V3, V4, and V5 versions of the S-PUL method 
than the [12] study (which had the best efficiency). Nota-
bly, this study’s recall value for the Endocrine disease 
class reached 100%. In addition to the recall measure, the 
precision measure is increased by 2.46% in the V5 version 
of the S-PUL method. The  F1 measure is increased n V3, 
V4, and V5 versions of the S-PUL method compared to 
the previous studies, except for the [12] study.

Table 12 The statistical information of the third score implementation in "Action5- The prediction and ranking of disease candidate 
genes" section for each disease

The name of the disease Distance interval from 
Support Vector

Score range Number of candidate 
disease genes

The third score 
range of disease 
genes

Adrenal [−3.28 , 1.12] [−131.2 , 74.66] 45 [0.16 , 14.32]

Colon [−6.21 , 14.78] [−155.25 , 184.75] 338 [1.71 , 295]

Lung [−9.25 , 3.78] [−168.18 , 151.2] 28 [0.05 , 153.7]

Prostate [−8.4 , 12.6] [−168 , 180] 280 [0.43 , 302.5]

Heart Failure [−7.1 , 3.03] [−157.7 , 121.2] 44 [1.9 , 123.5]

Neurological [−6.93 , 5.66] [−173 , 161.71] 18 [0.03 , 301.71]

Table 13 Comparing the performance of the S-PUL method (for 
four versions separately) with the [12] study

The name of 
the disease

Method Precision Recall F1

Colon Nikdel et al. [12] 93% 94% 93%

S-PUL_V1 82.66% 97.84% 89.61%

S-PUL_V3 88.55% 99.32% 93.69%

S-PUL_V4 86.68% 98.98% 92.42%

S-PUL_V5 95.14% 99.32% 97.19%
Lung Nikdel et al. [12] 91.1% 95% 93.3%

S-PUL_V1 79.06% 88.69% 83.6%

S-PUL_V3 89.28% 92.59% 90.9%

S-PUL_V4 85.71% 88.88% 87.27%

S-PUL_V5 92.85% 96.29% 94.54%
Prostate Nikdel et al. [12] 92% 95% 93%

S-PUL_V1 77.46% 96.98% 86.13%

S-PUL_V3 93.06% 98.83% 95.86%

S-PUL_V4 89.64% 97.28% 93.3%

S-PUL_V5 95.14% 98.83% 96.95%
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The efficiency results of the proposed method are 
reported in Table  16  compared to the efficiency of the 
previous methods for predicting the Cancer disease class 
candidate genes, including Colon, Prostate, and Lung dis-
eases for V3, V4, and V5 versions of the S-PUL method. 
Based on the evaluation results, the efficiency of all three 
versions of the S-PUL method is enhanced compared to 
the [12] study (which had the best efficiency). The best 
results relate to the V5 version of the S-PUL method 
compared to the [12] study; its precision, recall, and  F1 
measures are improved by 2.38%, 3.11%, and 4.75%.

The AUC value in the V5 version of the S-PUL method 
for Neurological disease class (including Neurologi-
cal disease) is increased by 8.82%, compared to the SFM 
method [6] (the best previous method), according to 
Table 17. The recall measure in all versions of the S-PUL 
method is more than in previous methods. The best pre-
cision, recall, and F1 measures’ values are related to EPU 
[14] by 78.2%, 80.4%, and 78.6%. These measures’ values 
reached 84.21%, 100%, and 91.42% in the V5 version of 
the S-PUL method.

Comparing the efficiency of the S‑PUL proposed method 
with biologists’ efficiency
It is worth noting that the biological researchers identi-
fied other unlabeled genes as disease genes (six diseases 
introduced in Table 2) from 2015 to 2020 through labora-
tory methods. Then, they are introduced in the [4] data-
set. The predicted disease genes by the S-PUL method 
and [12] study with the disease genes set (introduced 
for the 2015–2016 period and 2017–2020 period by bio-
logical researchers) are compared in Tables  18 and 19, 
respectively, to determine the efficiency. Notably, 2015 to 
2016 and 2017 to 2020 sets are reported in the third and 
fourth rows of Table 2, respectively.

According to Table 18, the efficiency of the V5 version 
of the S-PUL method compared to the [12] study is as 
follows:

The prediction in Adrenal disease is the same; in Colon 
disease has ten more disease genes; in Prostate disease 
has 11 more disease genes. On the other hand, the V5 
version of the S-PUL method has predicted two disease 

Table 14 Comparing the performance of the S-PUL method 
with previous methods in the prediction of unlabeled genes of 
Cardiovascular disease class (including Heart Failure disease)

Method Precision Recall F1

PUDI [20] 83.6% 75.3% 79.2%

ProDiGe [19] 57.3% 87.7% 69.3%

Smalter et al. [8] 76.4% 58.8% 66.5%

Xu et al. [21] 75.4% 62% 68%

EPU [14] 88.1% 87.7% 87.9%

Nikdel et al. [12] 94.79% 99.47% 97.07%

S-PUL_V1 67.05% 97.47% 79.45%

S-PUL_V3 82.60% 100% 90.47%

S-PUL_V4 84.44% 100% 91.56%

S-PUL_V5 97.43% 100% 98.7%

Table 15 Comparing the efficiency of the S-PUL method with 
previous methods in the prediction of unlabeled genes of 
Endocrine disease class (including Adrenal disease)

Method Precision Recall F1

PUDI [20] 82% 80.3% 80.4%

ProDiGe [19] 54.3% 96.3% 69.3%

Smalter et al. [8] 75.4% 67.6% 70.6%

Xu et al. [21] 72.1% 60% 65.4%

EPU [14] 85.2% 81% 84.1%

Nikdel et al. [12] 91.87% 94.23% 93.03%

S-PUL_V3 84.84% 96.55% 90.32%

S-PUL_V4 85.93% 94.82% 90.16%

S-PUL_V5 95% 98.27% 96.61%

Table 16 Comparing the efficiency of the S-PUL method with 
the previous methods in the prediction of Cancer class unlabeled 
genes, including Colon, Prostate, and Lung diseases

Method Precision Recall F1

PUDI [20] 76.3% 80% 78%

ProDiGe [15] 71.1% 79.8% 75.3%

Smalter et al. [8] 73.8% 79% 76.3%

Xu et al. [21] 71% 79.7% 75.1%

EPU [14] 81.2% 84.5% 82.6%

SFM [6] 76.9% 79.8% 78.3%

Nikdel et al. [11] 96.73% 95.83% 94.28%

S-PUL_V3 98.94% 98.94% 98.94%

S-PUL_V4 98.76% 98.94% 98.85%

S-PUL_V5 99.11% 98.94% 99.03%

Table 17 Comparing the efficiency of the S-PUL method with 
previous methods in the prediction of the unlabeled genes of 
Neurological disease class (including Neurological disease)

Method Precision Recall F1 AUC 

PUDI [20] 70.3% 80.1% 74.9% 85.4%

ProDiGe [19] 63.1% 74% 68.1% 64.6%

Smalter et al. [8] 60.6% 65.6% 63.1% 73.9%

SFM [6] - - - 88.2%

Xu et al. [21] 59.7% 66.7% 63% -

EPU [14] 78.2% 80.4% 78.6% -

S-PUL_V1 78.82% 93.05% 85.35% -

S-PUL_V3 80% 100% 88.88% -

S-PUL_V4 83.33% 93.75% 88.23% -

S-PUL_V5 84.21% 100% 91.42% 97.02%
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genes and only one disease gene lesser than biologists [4] 
in Prostate and Colon diseases, respectively.

According to Table 19, compared to biologists, the V4 
and V5 versions of the S-PUL method are predicted all 
genes in Adrenal and Neurological diseases. Moreover, 
the V5 version of the S-PUL method only predicted one 
disease gene lesser than biologists in Colon, Per, Lung, and 
Heart Failure diseases. Hence, according to the learned 
models, the V5 version efficiency of the S-PUL method in 
predicting disease genes is very proper based on the 2014 
dataset (introduced in the second row of Table 2).

Conclusion
In two steps, the reliable negative genes are extracted in 
this study to reduce available noise in extracted nega-
tive genes from unlabeled genes. These two steps are 
(i) one-class learning and (ii) filtering based on the dis-
tance measure. The proposed method initially filters 
positive educational genes in the disease binary model 
learning step. Then, the SVM binary model is learned 
using selected positive samples and extracted reliable 

negative samples for each disease separately. In the 
prediction step, the binary model is learned to predict 
unlabeled samples’ labels (labeling) and rank them. 
Moreover, two filters of (i) nearness of gene to disease 
genes and (ii) distance of each gene from the support 
vector are used.

Using influential factors to predict and rank disease 
candidate genes and properly use them in the S-PUL 
method leads to the strong performance of this method 
compared with previous methods. In this line, the men-
tioned claim is proved by 99.51% average correspond-
ence of predicted disease genes with introduced disease 
genes from 2015 to 2016 and 98.54% from 2017 to 2020. 
Moreover, 96.74% lack of average of considered nega-
tive genes in evaluating disease genes during the men-
tioned periods proves this claim.

The following propositions are presented for future 
studies in this regard based on the performed imple-
mentation and advantages and disadvantages of the 
presented method:

Table 18 Comparing the S-PUL method efficiency and the [12] study with biologists in the prediction of disease genes from 2015 to 
2016

The name of the 
disease ↓

Method→ Biologists [4] Nikdel et al. [12] SPUL_V3 SPUL_V4 SPUL_V5

Adrenal Number of genes 9 9 8 8 9

Recall 100% 88.88% 88.88% 100%

Colon Number of genes 240 229 233 238 239

Recall 95.41% 97.08% 99.16% 99.58%

Prostate Number of genes 191 178 182 188 189

Recall 93.61% 95.28% 98.42% 98.95%

Table 19 Comparing the S-PUL method efficiency with biologists in predicting disease genes from 2017 to 2020

The name of the disease 
↓

Method→ Biologists [4] SPUL_V3 SPUL_V4 SPUL_V5

Adrenal Number of genes 29 28 29 29

Recall 96.55% 100% 100%

Colon Number of genes 56 54 55 55

Recall 96.42% 98.21% 98.21%

Prostate Number of genes 67 62 66 66

Recall 92.53% 98.50% 98.50%

Lung Number of genes 27 23 25 26

Recall 85.18% 92.59% 96.29%

Heart Failure Number of genes 58 50 56 57

Recall 86.20% 96.55% 98.27%

Neurological Number of genes 16 13 16 16

Recall 81.25% 100% 100%
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A) The delimitation of distances and scoring to genes 
are carried out discretely and integrity units in the 
S-PUL method. More or less of the genes located at 
borders (even fractional) can lead to changes in cate-
gory and score in such a way that eliminates or main-
tain the gene. This method should be improved.

B) Two steps are used in this study to find reliable nega-
tive genes. It is proposed to use other information 
sources (such as the PPI network) to increase trust in 
extracted negative genes.

C) Two filtering methods based on statistical measures 
are used in this study to reduce errors in identify-
ing and ranking disease candidate genes. Meanwhile, 
other genetic factors that are effective in the forma-
tion of a disease can consider and introduce in the 
final score.

D) A deep learning approach in PU learning is proposed 
to improve the results of identifying and predicting 
disease candidate genes.
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