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Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic and progressive lung disease. Disulfidptosis-
related genes (DRGs) may be involved in the pathogenesis of COPD. From the perspective of predictive, preventive, 
and personalized medicine (PPPM), clarifying the role of disulfidptosis in the development of COPD could provide a 
opportunity for primary prediction, targeted prevention, and personalized treatment of the disease.

Methods We analyzed the expression profiles of DRGs and immune cell infiltration in COPD patients by using 
the GSE38974 dataset. According to the DRGs, molecular clusters and related immune cell infiltration levels were 
explored in individuals with COPD. Next, co-expression modules and cluster-specific differentially expressed genes 
were identified by the Weighted Gene Co-expression Network Analysis (WGCNA). Comparing the performance of the 
random forest (RF), support vector machine (SVM), generalized linear model (GLM), and eXtreme Gradient Boosting 
(XGB), we constructed the ptimal machine learning model.

Results DE-DRGs, differential immune cells and two clusters were identified. Notable difference in DRGs, immune 
cell populations, biological processes, and pathway behaviors were noted among the two clusters. Besides, significant 
differences in DRGs, immune cells, biological functions, and pathway activities were observed between the two 
clusters.A nomogram was created to aid in the practical application of clinical procedures. The SVM model achieved 
the best results in differentiating COPD patients across various clusters. Following that, we identified the top five 
genes as predictor genes via SVM model. These five genes related to the model were strongly linked to traits of the 
individuals with COPD.
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Introduction
As is well documented, chronic obstructive pulmonary 
disease (COPD) is a chronic and progressive lung dis-
ease characterized by respiratory symptoms associated 
with chronic airflow restriction, and clinical features 
include chronic bronchitis, small airway destruction, 
and alveolar enlargement/disturbance [1, 2]. According 
to a 2018 study, approximately 300 million people suffer 
from COPD worldwide, causing about 3.2 million death 
each year [3]. The diagnosis rate of COPD patients ranges 
from 23.61 to 30.00% in China [4]. With global aging 
and an elevated smoking population, the incidence of 
COPD is also on the rise, which not only puts a burden 
on healthcare systems but also leads to a heavy finan-
cial burden [5–10]. To better manage COPD, Zhu et al. 
suggested that COPD individuals may gain more benefit 
through predictive, preventive, and personalized medi-
cine (PPPM) than current “one-sizefits-all” approach 
[11].

Regrettably, a large proportion of COPD patients suf-
fer from missed diagnoses or misdiagnoses [12, 13]. The 
diagnosis of COPD largely relies on pulmonary function 
tests to determine the degree of airflow restriction (i.e., 
forced expiratory volume (FEV1)/ forced vital capacity 
(FVC) < 0.7 after bronchodilator use for COPD diagnosis) 
[14]. However, the spirometry may not be readily avail-
able. Therefore, it is imperative to discover more accurate 
methods to assist clinicians in diagnosing COPD. Previ-
ous studies designed predictive models based on specific 
molecular markers for the diagnosis of diseases [15–17], 
which can strongly encourage the transition from reac-
tive to PPPM [18].

To establish a predictive model of COPD, its pathogen-
esis must first be elucidated. Immunoinflammation [19], 
cell senescence [20], and proteolysis [21] are postulated 
to participate in the pathogenesis of COPD, ultimately 
leading to the death of lung cells [22–25]. Liu et al. dem-
onstrated that cell death-related mechanism could serve 
as a promising tool for PPPM. Disulfidptosis, a novel cell 
death mechanism, is caused by disulfide stress induced 
by aberrant accumulation of cystine (Gys, a disulfide with 
high cytotoxicity) [26–28]. Under physiological condi-
tions, glucose generates a reduced form of nicotinamide 
adenine dinucleotide phosphate (NADPH) via the pen-
tose phosphate pathway, thereby providing a key reducing 
capacity to counteract the toxic effects of disulfide stress 

on cells. However, excessive cystine uptake and cystine 
reduction to cysteine (Gyss) deplete the NADPH pool 
under hypoglycemic states, while actin increases the cell’s 
sensitivity to disulfide stress, eventually promoting mas-
sive accumulation of disulfide molecules and rapid cell 
death [29, 30]. In this process, the members of the solute 
carrier family, namely SLC7A11 and SLC3A2, form com-
plexes that trigger the entry of extracellular cystine into 
cells, which can also cause abnormal disulfide bonding in 
the cytoskeleton protein actin and F-actin collapse [25]. 
Beeh et al. found increased disulfide concentration in the 
sputum of COPD patients [31], signaling that disulfidp-
tosis may be implicated in the pathogenesis of COPD. 
Therefore, a comprehensive understanding of disulfidp-
tosis-related genes (DGRs) might provide insights for the 
PPPM strategy for COPD.

However, the role of the DRGs in the pathogenesis of 
COPD remains elusive. The purpose of the current study 
was to establish a diagnostic model based on differen-
tially expressed disulfidptosis-related genes (DE-DRGs) 
to improve the accuracy and convenience of COPD diag-
nosis and provide additional candidate biomarkers for 
clinical research, as well as the diagnosis and treatment 
of COPD.

Materials and methods
Experimental design
The experimental design is illustrated in Fig. 1.

Data acquisition and pre-processing
Two datasets (GSE38974 and GSE76925), both including 
healthy individuals and COPD individuals, were retrieved 
from the GEO database  (   h t  t p s  : / / w  w w  . n c b i . n l m . n i h . g o 
v / g d s     ) . As stated above, the two data matrices included 
healthy individuals and COPD patients. They were pre-
processed by Perl language according to our previous 
method [32]. The GSE38974 dataset (GPL4133 platform), 
including lung tissue samples from 9 healthy individuals 
(control group) and 23 COPD individuals (COPD group), 
were selected for further analysis [33]. Meanwhile, the 
GSE76925 dataset (GPL10558 platform), including 
lung tissue samples from 40 healthy individuals and 111 
COPD individuals, was selected for validation [34]. The 
following clinical characteristics were extracted from the 
GSE76925 dataset: body mass index (BMI), forced expi-
ratory volume in 1 s, percent predicted (FEV1.PP), ratio 

Conclusion Our study demonstrated the relationship between disulfidptosis and COPD and established an optimal 
machine-learning model to evaluate the subtypes and traits of COPD. DRGs serve as a target for future predictive 
diagnostics, targeted prevention, and individualized therapy in COPD, facilitating the transition from reactive medical 
services to PPPM in the management of the disease.
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of FEV1 to forced vital capacity (FEV1/FVC), low attenu-
ation areas at − 950 HU on chest computed tomography 
(CT) scans (LAA950), 15th percentile of the lung den-
sity histogram on chest CT scans (perc15), and square 
root wall area of a hypothetical airway with 10  mm 
internal perimeter (Pi10) [34]. DRGs were obtained 
from the study of Deal et al. [35]. The R Programming 
Language(version 4.1.3) was utilized in this study.

Identification of DE-DGRs in COPD
The “limma” R package was employed to screen DE-
DRGs from the GSE38974 dataset. The “ggpubr” R pack-
age and “pheatmap” R package was used to construct 
the box plot and heatmap, respectively. The “corrplot” R 
package was applied to correlate DE-DRGs and explore 
their correlations.

Fig. 1 Experimental design was exhibited
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Assessing the immune cell infiltration
COPD is a state of prolonged chronic inflammation 
[18]. Therefore, the difference in immune cell infiltration 
between the normal control group and the COPD group 
was examined. CIBERSORTx is a general-purpose gene 
expression-based deconvolution algorithm that quanti-
fies cellular components from the gene expression profile 
of a tissue [36]. The methods used to assess the infiltra-
tion of immune cells refer to our previous study [32]. Sin-
gle-sample gene-set enrichment analysis (ssGSEA) was 
employed to generate abundance score of. immune cell 
infiltration [37]. Samples with p < 0.05 were selected to 
generate the immune cell infiltration matrix via ssGSEA.

Correlation analysis between DGRs and infiltrated immune 
cells
In order to further illustrate the connection between 
DGRs and the attributes of pertinent immune cells, the 
correlation coefficient was calculated to determine the 
relationship between DE-DRG expression and the pro-
portion of immune cells. A correlation was considered 
significant if the p-value, as determined by the Spearman 
correlation coefficient, was less than 0.05. Ultimately, the 
outcomes were displayed utilizing the R package called 
‘corrplot’.

Clustering of COPD patients
Using the expression profile of DGRs, we utilized the 
‘ConsensusClusterPlus’ R package to conduct unsuper-
vised clustering analysis on a group of 23 COPD patients, 
classifying them into distinct subtypes.By setting the k 
value from 1 to 9, various subtypes were created, and the 
ideal cluster count was chosen based on the consensus 
score. Principal component analysis (PCA)was utilized to 
visualize the distribution of the two subtypes.

Gene set variation analysis (GSVA)
The “GSVA” R package was utilized for conducting GSVA 
enrichment analysis and assessing variations in enriched 
gene sets among the various DGR clusters.The symbols 
‘c5.go.symbols’ and ‘c2.cp.kegg.symbols’ were obtained 
from the MSigDB database.To identify differential 
expression pathways and biological functions, the limma 
R package (version 4.13) was utilized to compare GSVA 
scores among the various clusters of DGRs.A P-value 
less than 0.05 is regarded as a statistically significant 
distinction.

The “GSVA” R package was employed for GSVA enrich-
ment analysis and to evaluate differences in enriched 
gene sets among the different DGR clusters. The “c5.
go.symbols” and “c2.cp.kegg.symbols:” were acquired 
from the MSigDB database. The “limma” R package (ver-
sion 4.13) was applied to identify differential expres-
sion pathways and biological functions by comparing 

GSVA scores between the different DGRs clusters. A 
P-value < 0.05 is considered a statistically significant 
difference.

Weighted gene co-expression network analysis (WGCNA)
The “WGCNA” R package was utilized to establish the 
WGCNA co-expression module.Following our previous 
studies, we constructed disease WGCNA and clusters 
WGCNA [32]. We selected the genes in the module with 
the greatest significance and the smallest p-value from 
disease WGCNA and clusters WGCNA, and intersected 
the genes in the two modules. The intersection-genes are 
used to build machine learning models [32].

Construction and validation of a nomogram model
To investigate COPD clusters, nomogram models were 
constructed using the “rms” R package. Nomogram mod-
els were by using the ‘rms’ R package to assess COPD 
clusters. A score was given to each predictor, and the 
sum of all predictor scores resulted in the ‘total score’. To 
assess the predictive ability of the nomogram model, the 
calibration curve and DCA were employed.

Construction of predictive model based on multiple 
machine learning methods
The 23 COPD samples from GSE38974 dataset were 
classified as a training set. The 109 COPD samples from 
GSE76925 dataset were classified as a testing set. The 
input dimension in GSE38974 dataset was as follows: 32, 
19695; The input dimension in GSE76925 dataset was as 
follows:151, 25222. To construct machine learning mod-
els which includes the random forest (RF) model, sup-
port vector machine (SVM) model, generalized linear 
model (GLM), and eXtreme Gradient Boosting (XGB), 
we utilized the ‘caret’ R package. The hyperparameters of 
each machine learning model were as follows: RF: ntree: 
500, mtry: 3, nodesize: 1; SVM: C: 1, sigma: caret, prob.
model: true; GLM: family: binomial; XGB: nrounds: 
150, maxdepth: 6, eta: 0.3, gamma: 0,subsample: 1, col-
sample_bytree: 1, lambda: 1. The “pROC” R pages visu-
alized the area below the ROC curve.The key predictive 
genes associated with COPD were regarded as the top 
5 significant variables in the optimal machine learn-
ing model.To examine the diagnostic significance of the 
model, an analysis of the receiver operating characteristic 
(ROC) curve was conducted using the GSE76925 dataset.
Subsequently, a correlation analysis was performed on 
the clinical characteristics of 109 COPD patients in the 
GSE76925 dataset, using the identified key predictive 
genes for COPD.
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Results
Identification of DE-DRGs in COPD
To clarify the role of DRGs in the advancement and 
growth of COPD, we utilized the GSE38974 dataset to 
assess their expression profile in both the control and 
COPD groups.We revealed the four genes as DE-DRGs 
(Fig.  2a). In COPD, the levels of NDUFA11, RPN1, and 
SLC7A11 were increased, while GYS1 expression was 
decreased (Fig.  2b).Afterwards, the correlation analysis 
was employed to identify associations among these four 
genes (Fig. 2c-d).

Immune Infiltration in COPD
An examination was conducted to compare the immune 
cell composition of the control and COPD groups.
Quantification of differences in 22 infiltrating immune 
cell types between the control and COPD groups was 

performed using the CIBERSORT algorithm (Fig. 3a-b).
In the COPD group, there was a notable rise in the num-
ber of follicular helper T cells and M0-macrophages, 
while the count of CD8 T cells, activated NK cells, and 
M2-macrophages showed a significant decline.Further-
more, the presence of neutrophils, activated NK cells, 
Plasma cells, and resting CD4 memory T cells showed 
an association with DRGs (Fig. 3c). Given that data was 
from lung tissue microarray, it will be critical to gener-
ate abundance score as oppose to relative abundance. 
The abundance scores of immune cell were exhibited in 
Fig. 3d. The trend of the score of follicular helper T cells 
is consistent with the trend of their relative abundance.

DRGs-Clusters in COPD
The 23 COPD samples were grouped using a consensus 
clustering algorithm based on the expression profiles 

Fig. 2 Identification of DE-DRGs in COPD. (a) The expression levels of 4 DE-DRGs were presented in the heatmap.(b) The expression levels of DRGs were 
exhibited between control and COPD groups in boxplots. (c-d) Correlation analysis of 4 DE-DRGs. Red and green colors represent positive and negative 
correlations, respectively. *p<0.05, **p<0.01, ***p<0.001
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Fig. 3 immune infiltration in COPD.(a) The difference in abundance of 22 infiltrating immune cell types between control and COPD groups. (b) The differ-
ences in immune infiltration between control and COPD groups are shown in the boxplot. (c) correlation analysis between four DE-DRGs and infiltrated 
immune cells. (d) The scores of immune cell between control and COPD groups are shown
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of the 4 DE-DRGs. The optimal cluster number was 
achieved when the value of k was set to 2 (Fig.  4a-b). 
On the other hand, for values of k ranging from 2 to 9, 
there was a disparity in the area beneath the two cumula-
tive distribution function curves (k and K-1) (Fig. 4c). he 
highest consistency score of each subtype was observed 
when k = 2 (Fig.  4d).According to PCA, the 23 patients 
diagnosed with COPD were divided into two groups 
called Cluster 1 (n = 11) and Cluster 2 (n = 12), and nota-
ble distinctions were observed between these two clus-
ters (Fig. 4e).

Differences in DRGs and immune infiltration levels 
between the DRGs-Clusters
Comprehensive evaluation was conducted to examine 
the molecular traits of both clusters and analyze their 
disparities in DRGs. The presentation of DRGs in Clus-
ter 1 and Cluster 2 was illustrated(Fig. 5a). Notably, the 
NUBPL expression level exhibited a decline in Cluster 2 
(Fig.  5b).Furthermore, examination of levels of immune 
cell infiltration indicated variations in the immune 
microenvironment of Cluster 1 and Cluster 2 (Fig.  5c).
The ratio of resting memory CD4 T cells was consider-
ably greater in Cluster 2 (Fig. 5d). The abundance score of 
immune cell between the two Clusters were exhibited in 

Fig. 5e. However, no significant difference was observed 
in the abundance score of immune cell between the two 
Clusters (Fig. 5e).

Biological functions and pathway activities based on GSVA
GSVA was used to identify pathway activities and bio-
logical functions.Cluster 1 showed enrichment of regu-
latory processes for exiting mitosis, phosphotransferase 
activity involving phosphate group as the acceptor, MCM 
complex, and mismatch repair.In contrast, Cluster 2 
exhibited enrichment in the regulation of ion transport, 
hematopoiesis regulation, positive regulation of cell dif-
ferentiation, and maintenance of divalent inorganic cat-
ion homeostasis (Fig.  6a). The KEGG pathway analysis 
showed that omplement and coagulation cascades, nod-
like receptor signaling pathway, type II diabetes mellitus, 
and Fc γ-mediated phagocytosis were increased in Clus-
ter 1. Additionally, Cluster 2 exhibited enrichment in 
lysine degradation, base excision repair, DNA replication, 
Parkinson’s disease, and Huntington disease (Fig. 6b).

Gene module screening and co-expression network 
construction
To construct the distinct color co-expression mod-
ules and the heat map of the topological overlap matrix 

Fig. 4 Identification of cuproptosis-related molecular clusters in COPD. (a) The cluster number was most stable when the k value was set to 2. (b) the 
CDF curve fluctuates within the minimum range of the consensus index of 0.2 to 0.6. (c) the area under the CDF curve shows the difference between the 
two CDF curves. (d) when k = 2, the concordance score of each subtype was the highest. (e) PCA showed significant differences between the two clusters
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Fig. 5 Differentiation of DRGs and immune infiltration between the DRGs-Clusters. (a) Different DRGs expression landscapes were exhibited in the heat-
map. (b) the expression of DRGs between two clusters was presented in the boxplot. (c) The difference in the abundance of 22 infiltrating immune cell 
types between the two clusters. (d) The differences in immune infiltration between the two clusters are shown in a boxplot. (e)  The abundance score of 
immune cell between the two Clusters are shown in a boxplot
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(TOM), the dynamic cutting algorithm was employed.
Out of these, a total of 759 genes in the blue module were 
found to be linked with COPD (Fig.  7a). Moreover, the 
WGCNA algorithm was employed to examine the cru-
cial gene modules that are strongly associated with DRG 
clusters.The analysis of the relationship between modular 
clinical features (Cluster 1 and Cluster 2) revealed that 
591 genes in the blue module exhibited a strong corre-
lation with COPD clusters (Fig. 7b). Two modules were 
analyzed using the ‘Venn’ R package, resulting in the 
identification of 9 intersection genes. (Fig. 7c).

Construction of machine learning models
Four machine-learning models, namely RF, SVM, GLM, 
and XGB, were established using cluster-specific DEGs in 
the training cohort of COPD. We used the “DALEX” R 
package to interpret the four models and plot the resid-
ual distribution. GLM machine learning models dem-
onstrated a comparatively low residual value (Fig. 8a-b). 
Subsequently, the genes for the top 15 important features 
of each model were verified based on root-mean-square 
error (RMSE) (Fig.  8c). Furthermore, the discrimina-
tory efficacy of the four machine learning models was 
assessed by generating receiver operating characteris-
tic (ROC) curves using 5-fold cross-validation in the 
training set (GSE38974 dataset) (Fig.  8d). In addition, 
the AUC values in the four models were exhibited (RF, 
AUC = 0.833; SVM, AUC = 0.917; XGB, AUC = 0.792; 
GLM, AUC = 0.667). The SVM machine learning model 
performed better than the other models in differentiating 
COPD patients with various clusters, based on the resid-
ual value and AUC. Finally, the top five most important 
genes (MMP9, TMEM27, ZNF785, ZNRF3, and IPPK) 
from the GLM model were selected as predictor genes 
for the ensuing analyses.

Construction of nomogram model
A nomogram was constructed to estimate the risk of 
cuproptosis clusters in 23 COPD patients (Fig. 9a). Next, 
correction curve and decision curve analysis (DCA) were 
employed to test its predictive efficiency. According to 

the calibration curve, the error between the actual risk 
and the predicted risk of the COPD cluster was small 
(Fig.  9b). At the same time, DCA indicated that the 
nomogram had high accuracy and could assist in clinical 
decision-making (Fig. 9c).

Assessment of machine learning models
The GSE76925 dataset was employed to verify the accu-
racy of the machine-learning model. In the GSE76925 
dataset, the AUC value of the ROC curve of the SVM 
model, which incorporated five genes (MMP9, TMEM27, 
ZNF785, ZNRF3, and IPPK), was determined to be 
0.907 (Fig.  10a). The correlations between clinical traits 
of COPD patients were subsequently examined in the 
GSE76925 dataset (Fig. 10b-l). Briefly, ZNF785 was posi-
tively correlated with age (R = 0.27), IPPK was negatively 
correlated with age (R= -0.34) and FEV1.pp (R= -0.32) 
and positively correlated with pi10 (R = 0.35), ZNRF3 was 
negatively correlated with BMI (R= -0.25) and perc15 (R= 
-0.23) and positively correlated with laa950 (R = 0.23), 
TMEM27 was negatively correlated with BMI (R= -0.20) 
and FEV1.pp (R= -0.20), ZANF785 was positively corre-
lated with FEV1.pp (R = 0.21), and lastly, iPPK was nega-
tively correlated with FEV1/FVC (R= -0.26).

Discussion
Disulfidptosis and COPD
Previous studies demonstrated that the content of disul-
fide is increased in the sputum of COPD patients, which 
may be involved in disulfidptosis [25, 26, 31]. Based on 
this evidence, we hypothesized that disulfidptosis may 
play a decisive role in the pathogenesis of COPD. To 
the best of our knowledge, this is the first study to com-
prehensively analyze the expression profile of DRGs in 
healthy subjects and COPD patients. More importantly, 
the results exposed significant differences in the expres-
sion level of NDUFA11, RPN1, SLC7A11, and GYS1 
in COPD patients compared with the healthy popula-
tion. NDUFA11 is a crucial respiratory chain protein in 
mitochondria, and its abnormal expression or structure 
may lead to defects in the cellular respiratory chain [38]. 

Fig. 6 Biological functions and pathway activities between two CRG clusters. (a) Differences in biological functions between Clusters 1 and 2 samples 
ranked by t-value of GSVA method. (b) Differences in hallmark pathway activities between Clusters 1 and 2 samples ranked by the t-value of the GSVA 
method
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Fig. 7 Gene modules and coexpression network. (a) Correlation analysis between module eigengenes and clinical status in control and COPD groups. 
(b) Correlation analysis between module eigengenes and clinical status in the two clusters. Each row represents a module; each column represents a 
clinical status. (c) Identification of the intersected genes of disease WGCNA and cluster-WGCNA
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In the current study, the expression of NDUFA11 was 
up-regulated in COPD individuals, insinuating that the 
cell respiratory chain may be damaged. The ability of 
cells to resist disulfidptosis can be enhanced by knock-
ing down RPN1, which encodes an N-oligosaccharyl 

transferase located in the endoplasmic reticulum [39]. In 
this study, the expression level of RPN1 was elevated in 
COPD patients, inferring that COPD patients are more 
prone to disulfidptosis. SLC7A11, also referred to as sol-
ute carrier family 7 member 11, forms a protein complex 

Fig. 8 Construction of machine learning models. (a) Residual distribution of each machine learning model. (b) The residuals of each machine-learning 
model are shown in boxplots. (c) The important features in machine learning models. (d) ROC analysis of four machine learning models based on 5-fold 
cross-validation in the testing cohort
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with SLC3A2 that stimulates cystine to migrate intra-
cellularly and accumulate; it can also stimulate the gen-
eration of abnormal disulfide bonds in the cytoskeleton 
protein actin and F-actin collapse, ultimately leading to 
cell death [29, 39, 40]. The up-regulated expression of 
SLC7A11 in COPD patients also signifies an increase in 

the abundance of the SLC7A11-SLC3A2 complex, which 
contributes to disulfidptosis. GYS1 (also known as glyco-
gen synthase 1) plays an instrumental role in governing 
glycogen metabolism and enhancing glycogen synthesis 
[41]. A reduction of GYS1 in COPD patients limits gly-
cogen synthesis, decreases intracellular glycogen storage, 

Fig. 9 Validation of the 5-gene-based SVM model. (a) Construction of a nomogram for predicting the risk of COPD clusters based on the 5-gene-based 
SVM model. (b-c) Construction of calibration curve
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and further facilitates bacterial proliferation in the lung, 
thereby aggravating COPD [42].

The relation between immune cells and COPD
The airway and lung tissues of COPD patients trigger a 
sustained innate and adaptive immune inflammatory 
response involving neutrophils, macrophages, T lym-
phocytes, and other immune cells [43, 44]. Jogdand et al. 
identified differences in eosinophil count in the lung tis-
sue of COPD patients and claimed that these cells may 
play a regulatory role in bronchioles, alveolar paren-
chyma, and ectopic lymphocyte aggregation [45].

Although the LM22 signature matrix was utilized to 
evaluate immune cells in lung tissue [46–48], gene sets 
from blood-based immune cells may not be transferred 
well enough to analyze the lung transcriptome. There-
fore, in addition to the LM22 signature matrix, we also 
used ssGSEA to analyze immune cells in lung tissue. 
Based on LM22 signature matrix and ssGSEA, we found 
the follicular helper T cells (fhT) may play the crucial 
role in COPD. fhT plays a key intermediate role in the 

antibody response between dendritic cells (DC), T cells, 
and B cells [49]. In other words, fhT first interacts with 
DC before migrating to follicular B cells [50]. Neverthe-
less, its differentiation is strictly controlled. Besides, fhT 
may be regulated by cytotoxic T lymphocyte antigen 4 
(CTLA4). Shen et al. theorized that CTLA 4 levels were 
related to lung function and inflammation in chronic 
obstructive pulmonary disease [51]. An increase in the 
number of fhT can impact the proportion of B cells, 
which is conducive to the occurrence and development 
of COPD or even lead to exacerbation [52, 53].

DRGs-Clusters in COPD
In molecular biology, we are often interested in deter-
mining the group structure in cell populations or micro-
array gene expression data [54]. Based on the microarray 
gene expression data, observation subjects could be iden-
tified in similar observation groups [55]. In this study, 
DE-DRGs were utilized to cluster and divide COPD 
patients into two observation groups, namely Cluster 1 
and Cluster 2. The mutation in NUBL (named Nucleotide 

Fig. 10 Validation of correlation analysis based on GSE76925 dataset. (a) the ROC curve of the five genes of SVM model. (b) Correlation between the 
IPPK and age. (c) Correlation between the ZNF785 and age. (d) Correlation between the TMEM27 and BMI. (e) Correlation between the ZNRF3 and BMI. 
(f) Correlation between the IPPK and FEV1/EVC. (g) Correlation between the IPPK and FEV1/FVC. (h) Correlation between the IPPK and FEV1PP. (i) Cor-
relation between the ZNF785 and FEV1PP. (j) Correlation between the ZNRF3 and laa950. (k) Correlation between the ZNRF3 and perc15. (l) Correlation 
between the IPPK and pi10
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Binding Protein-Like) was considered to be associated 
with nervous system diseases [56, 57]. The abnormality 
in NUBL can potentially trigger mitochondrial damage 
[58], indicating that pulmonary cells of Cluster 1 patients 
exhibited mitochondrial function impairment.

Muthu K Shanmugam et al. described that epigenetic 
inheritance may be involved in COPD [59]. In the pres-
ent study, the regulation of exit from mitosis, mismatch 
repair, and MCM complex was significantly increased 
in Cluster 1 patients. Abnormal functioning of the DNA 
mismatch repair system can trigger COPD and may 
be related to alterations in microsatellite (MS) DNA 
[60]. Therefore, attention should be paid to fluctuations 
in epigenetics in Cluster 1 patients. In addition, the 
KEGG result of KEGG pathway analysis exposed that 
Fc γ-mediated phagocytosis was enriched in Cluster 1. 
FcγR (Fc γ receptors) are receptors on the C-terminal of 
the Fc portion of IgG that mediate the antigen-antibody 
complex on cells and play a key role in the pathogenesis 
of COPD [61]. Fc γ-mediated phagocytosis may be con-
sidered as a new therapeutic target for these patients in 
Cluster (1) In contrast, regulation of ion transport and 
regulation of hematopoiesis were enriched in Cluster (2) 
Abnormal fluctuations in ion transport, such as abnor-
mal transfer of sodium and chloride ions, can lead to 
increased mucus secretion, which exacerbates respira-
tory obstruction in COPD patients [62]. Stefan Kuhnert 
highlighted that clonal hematopoiesis of indeterminate 
potential may be related to inflammatory gene expres-
sion in COPD patients [63]. Interestingly, Parkinson’s 
disease(PD) was enriched in Cluster 2. The potential 
link between COPD and PD remains unclear. Previous 
study suggested that Elevated PM2.5 concentrations may 
increase the risk of PD in the individual with COPD [64].

Machine learning model and COPD
To date, no treatment has been shown to halt or reverse 
the progression of COPD, and consequently, there is 
an urgent need for a timely diagnosis. Multiple stud-
ies have recently sought to identify undiagnosed COPD 
and establish approaches for its early diagnosis, and their 
value will ultimately be determined by the impact of 
interventions on the disease [65]. To better diagnose dis-
eases, disease prediction models based on special molec-
ular markers have been used [66].

Based on the expression profiles of cluster-specific 
DRGs, the predictive performance of the four selected 
machine learning models (RF, SVM, GLM, XGB) for 
COPD was compared, and the results uncovered that 
the GLM model was more accurate in predicting COPD. 
Based on the GLM model, the five most important genes 
(MMP9, TMEM27, ZNF785, ZNRF3, and IPPK) were 
selected as predictor genes and used to construct the pre-
dictive model. Nevertheless, The AUC curve is obtained 

with a tiny number of samples therefore, it is challenging 
to compare AUCs, for example the standard error would 
be huge. Therefore, the external data as testing set was 
used for validation. Another dataset of COPD was there-
upon utilized to test the accuracy of the model, and the 
results showed that the AUC of the predictive model was 
0.907, signifying satisfactory accuracy. Moreover, these 
five predictor genes were used to correlate clinical traits 
in patients with COPD. Four genes, including ZNF785, 
IPPK, ZNRF3, and TMEM27, were found to be signifi-
cantly correlated with age, BMI, FEV1PP, FEV1/FVC, 
laa950, and perc15.

Old age and high BMI are risk factors for COPD [67, 
68]. FEV1PP and FEV1/FVC, indicators of lung func-
tion, are critical parameters for the diagnosis of COPD 
[69, 70]. The perc15 is defined as the density value in 
HU below which 15% of the lung voxels are found [71]. 
The higher the pec15 value, the more active the lung 
inflammation [71]. Laa950 is a common threshold used 
to diagnose emphysema and is positively correlated with 
the severity of COPD [72]. Pi10 is considered an imaging 
biomarker of disease severity, decreased lung function, 
and mortality in individuals with COPD [73]. Meanwhile, 
IPPK (as known as inositol 1,3,4,5, 6-Pentakisphosphate 
2-kinase) was negatively correlated with age, FEV1PP, 
and FEV1/FVC and positively correlated with pi10. In 
this study, IPPK was positively correlated with Pi10 and 
negatively correlated with FEV1PP and FEV1/FVC, indi-
cating that it may aggravate lung tissue inflammation and 
inhibit respiratory function. ZNRF3 (Zinc and ring finger 
3) can suppress the Wnt signaling pathway [74], which 
plays a key role in inhibiting goblet cell metaplasia and 
mucus secretion, thus alleviating the symptoms of COPD 
[75]. ZNF785 (zinc finger protein 785) was positively cor-
related with age and FEV1.PP, but its biological function 
remains unknown. TMEM27 (Transmembrane protein 
27) was found to be expressed in β cells of the pancre-
atic islet and is related to the pathogenesis of diabetes 
[76], but its role in the respiratory system deserves fur-
ther investigation. Therefore, the machine learning model 
base on disulfidptosis may serve as an early indicator and 
reliable predictor of systemic dysfunction, making it cru-
cial for predicting and preventing COPD.

There are still some limitations to our research that 
cannot be overlooked. First of all, the research was based 
on a comprehensive bioinformatics analysis, and fur-
ther clinical or experimental evaluation is necessary to 
verify the expression levels of DRGs. Secondly, bulk and 
scRNA-seq should be performed in our future work. 
Lastly, additional COPD samples are required to identify 
disulfidptosis-related clusters and the machine learning 
models.
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Conclusion
In summary, our study revealed an association between 
DRGs and COPD. Based on the 5 predicted genes, the 
GLM model was regarded as the optimal machine learn-
ing model and could accurately evaluate the clinical 
symptoms of COPD patients. Our study is the first to 
identify the role of disulfidptosis in COPD and further 
elucidate the underlying molecular mechanisms that 
contribute to COPD heterogeneity.
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