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Abstract
Background  The growth in obesity and rates of abdominal obesity in developing countries is due to the dietary 
transition, meaning a shift from traditional, fiber-rich diets to Westernized diets high in processed foods, sugars, and 
unhealthy fats. Environmental changes, such as improving the quality of dietary fat consumed, may be useful in 
preventing or mitigating the obesity or unhealthy obesity phenotype in individuals with a genetic predisposition, 
although this has not yet been confirmed. Therefore, in this study, we investigated how dietary fat quality indices with 
metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the Karelis criterion interact 
with genetic susceptibility in Iranian female adults.

Methods  In the current cross-sectional study, 279 women with overweight or obesity participated. Dietary 
intake was assessed using a 147-item food frequency questionnaire and dietary fat quality was assessed using the 
cholesterol-saturated fat index (CSI) and the ratio of omega-6/omega-3 (N6/N3) essential fatty acids. Three single 
nucleotide polymorphisms-MC4R (rs17782313), CAV-1 (rs3807992), and Cry-1(rs2287161) were genotyped by the 
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and were combined 
to produce the genetic risk score (GRS). Body composition was evaluated using a multi-frequency bioelectrical 
impedance analyzer. Participants were divided into MHO or MUO phenotypes after the metabolic risk assessment 
based on the Karelis criteria.

Results  We found significant interactions between GRS and N6/N3 in the adjusted model controlling for 
confounding factors (age, body mass index, energy, and physical activity) (β = 2.26, 95% CI: 0.008 to 4.52, P = 0.049). In 
addition, we discovered marginally significant interactions between GRS and N6/N3 in crude (β = 1.92, 95% CI: -0.06 
to 3.91, P = 0.058) and adjusted (age and energy) (β = 2.00, 95% CI: -0.05 to 4.05, P = 0.057) models on the MUH obesity 
phenotype. However, no significant interactions between GRS and CSI were shown in both crude and adjusted 
models.
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Introduction
Obesity is widespread and occurs rapidly worldwide 
[1, 2]. Notably, the number of people with overweight 
or obesity globally is estimated at nearly 2.1  billion [3]. 
Inflammation-related illnesses, hypertension, dyslipid-
emia, diabetes mellitus (DM), cardiovascular diseases 
(CVDs), and other metabolic disorders are all strongly 
correlated with obesity [4]. However, not all obese indi-
viduals exhibit metabolic dysfunction [5]. It is well 
known that certain obese individuals have a suitable met-
abolic profile, including blood pressure, a good lipid and 
hormone balance, insulin sensitivity, and a lower risk of 
CVDs [6]. This subgroup is termed metabolically healthy 
obesity (MHO). This phenotype results from a com-
plex interaction of genetic, environmental, lifestyle, and 
dietary factors [5]. The metabolically unhealthy obesity 
(MUO) phenotype is linked to at least two or more met-
abolic abnormalities and an increased risk of CVDs [7]. 
In this study, MHO was defined using the Karelis criteria 
[8], which states that an individual cannot be classified as 
MHO unless they meet at least four proposed criteria [9].

Not much is known about the causes of the MHO phe-
notype [10]. MHO can be hereditary, but recent stud-
ies have shown that lifestyle variables, such as diet and 
physical activity (PA), can also play a significant role in its 
development [11]. Furthermore, certain dietary patterns 
may predispose individuals with MHO to a transition to 
a less favorable metabolic phenotype over time [12, 13]. 
Given the importance of diet in influencing metabolic 
health, it is essential to explore the relationship between 
dietary patterns and MHO, as this information may aid 
in developing strategies to improve metabolic health in 
overweight or obese individuals.

As a primary energy source, dietary fats play a criti-
cal role in the body [14–16]. While past research has 
often focused on the quantity of fat consumed, emerg-
ing evidence suggests that the type of dietary fat may 
significantly impact health and quality of life [17]. In 
this context, the Cholesterol-Saturated Fat Index (CSI), 
developed by Connor et al. [18], offers a novel approach 
to assessing dietary fat quality. Additionally, Simopoulos 
emphasized the importance of the omega-6 to omega-3 
(N6/N3) essential fatty acids (EFAs) ratio [19], suggest-
ing that a balanced N6/N3 EFA ratio may be vital for pre-
venting and managing chronic diseases. A cross-sectional 
study by Ramos-Lopez et al. [20] found that total dietary 
fat consumption was linked to a greater risk of meta-
bolically unhealthy overweight/obesity (MUHO) among 
298 Spanish adults with overweight or obesity. Similarly, 

Mirzabaabei et al. [21] reported that an “unhealthy” diet 
pattern—characterized by high-fat dairy, organ meats, 
and trans fats—was positively associated with MUHO.

Several studies suggest a link between dietary fat intake 
and obesity phenotypes. Large-scale genome-wide asso-
ciation studies (GWAS) of body fat percentage (BFP) 
identified multiple genetic variants associated with the 
MHO phenotype, indicating that certain genetic pro-
files may predispose individuals to greater adiposity 
with lower cardiometabolic risk [22]. Other studies have 
examined genetic variants linked to insulin resistance in 
the metabolically obese normal weight (MONW) pheno-
type, finding that these variants can influence metabolic 
health independently of body weight [23].

In both children and adults, the MC4R (melanocor-
tin 4 receptor) rs17782313 variation has been linked to 
increased body mass index (BMI) [24]. The C allele of 
this variant has been linked to an increased likelihood 
of obesity, inflammation, and cardiovascular risk fac-
tors such as insulin resistance and hypertension [25]. In 
adipocytes, which have many caveolae [26], caveolin-1 
(CAV-1) is a key structural protein [27]. Over the past 
decade, research has associated the CAV-1 genetic vari-
ant with a higher risk of atherosclerosis, dyslipidemia, 
and hypertension [28, 29]. Additionally, the Cry-1 gene, 
which regulates circadian rhythms, has been implicated 
in metabolic functions like glucose homeostasis [30]. The 
Cry-1 rs2287161 C allele has also been associated with a 
higher BMI [31]. Given that each of these genetic variants 
has been linked to an increased risk of obesity in cer-
tain populations [32], examining their combined impact 
through a genetic risk score (GRS) is crucial.

It is crucial to look into the GRS of these genes since 
studies have linked MC4R [33], Cav 1 [34], and CRY1 
[35] genetic variants to obesity. Moreover, recent stud-
ies suggest that single nucleotide variants (SNVs) may 
interact with dietary fat consumption to influence meta-
bolic health outcomes. Although the precise molecular 
mechanisms underlying this interaction have not been 
fully elucidated, it is hypothesized that genetic variants 
could affect lipid metabolism, fat storage, and inflam-
matory responses. For instance, SNVs in genes related to 
fat metabolism may alter how individuals process differ-
ent types of dietary fats, potentially leading to variations 
in the risk of developing MUO [36, 37]. Understanding 
these mechanisms is crucial for establishing targeted 
dietary recommendations based on genetic profiles [38]. 
In order to study this link, the pros and cons of various 
fats and fatty acids in the diet and the role of genetics in 

Conclusion  This study highlights the importance of personalized nutrition and recommends further study of widely 
varying fat intake based on the findings on gene-N6/N3 PUFA interactions.
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obesity and its phenotypes should be looked at. To our 
knowledge, there hasn’t been any research on this subject, 
and our study is the first to look at how GRS, CSI, and 
N6/N3 affect healthy and unhealthy obesity phenotypes.

Methods
Study population
This cross-sectional study includes 279 women with 
overweight or obesity in Tehran, Iran, who were referred 
to the medical services of the Tehran University of Medi-
cal Sciences (TUMS). The research population was 
drawn using a multistage cluster sampling technique. 
Participants were identified by age 18–48 years, BMI of 
25–40  kg/m2, the absence of an active weight loss pro-
gram, and the use of weight loss supplements. Partici-
pants who had CVDs, thyroid disease, diabetes, acute 
or chronic disease, cancer, kidney disease, menopause, 
were pregnant or lactating, or were taking lipid-lower-
ing, antidiabetic, antihypertensive, or weight-loss medi-
cations were excluded from the study. All participants 
signed an informed written consent before entering the 
study. The current study was authorized by the Ethics 
Committee of TUMS (assigned number: IR.TUMS.VCR.
REC.1399.636).

Body composition analysis and anthropometric indices
Anthropometric measurements were performed using 
a multi-frequency bioelectrical impedance analyzer 
(BIA), the InBody 770 (Inbody Co., Seoul, Korea) scan-
ner. These measurements included weight, BMI, body 
free mass (BFM), bone mineral content (BMC), visceral 
fat area (VFA), fat-free mass (FFM), fat-free mass index 
(FFMI), body fat percentage (BF%), and visceral fat area 
[39]. With an accuracy of 0.5 cm, the participants’ waist 
(WC), hip circumferences, and heights were measured 
[40]. The waist-to-hip ratio (WHR) was then calculated 
using the method. Aditional informations are in previous 
studies [41–43].

Biochemical and hormonal determination
All blood samples were collected after 10–12 h of fasting 
and placed in tubes containing 0.1% EDTA. Samples were 
centrifuged as soon as possible for 10 min. At 3000 rpm, 
aliquoted, and stored at or below 80oC until analysis. 
According to the manufacturer’s procedure, a single assay 
was used to examine all of the samples. All of the samples 
were examined using an AutoAnalyzer BT1500 (Selec-
tra2; Vital Scientific, Spankeren, Netherlands). Serum 
triglyceride (TG) was measured using the Glycerol-
3-phosphate Oxidase Phenol 4-Aminoantipyrine Per-
oxidase (GPO-PAP) technique. An endpoint enzymatic 
technique was applied to determine total cholesterol. 
Both the direct technique and immunoinhibition were 
used to measure low-density lipoprotein-cholesterol 

(LDL-C) and high-density lipoprotein-cholesterol (HDL-
C). As an indicator of inflammation, the amount of High-
sensitivity C-reactive protein (hs-CRP) was determined 
by the immunoturbidimetric technique. All kits were 
supplied by Pars Azmoon Company (Pars Azmoon Inc., 
Tehran, Iran). The following formula was used to calcu-
late the Homeostatic Model Assessment; HOMA-IR: 
[fasting plasma glucose (mmol/l) * fasting plasma insulin 
(mIU/l)]. /22.5 [44]. The criteria for HOMA-IR were con-
sidered to be ≥ 1.95 [45]. In addition, serum insulin was 
measured by the enzyme-linked immunosorbent assay 
(ELISA) technique (Human Insulin ELISA Kit, DRG 
Pharmaceuticals, GmbH, USA).

Dietary intake assessment
Food consumption was measured using a semi-quantita-
tive food frequency questionnaire (FFQ) containing 147 
foods, including a list of foods consumed in the previous 
year [46]. All participants were asked about the amount 
and frequency of each food consumed on a daily, weekly, 
or monthly basis. The recorded frequency of each food 
was then converted to grams per day. N4 software (First 
Data Bank, San Bruno, CA), which contains a database 
adapted for Iranian foods, was used to evaluate dietary 
nutrient consumption. In addition, this survey has high 
reliability and validity [46].

Fatty acid quality indices
Indices of fat quality such as CSI and N6/N3 ratio are 
computed using their respective formulas.

CSI: Gives information about saturated fats and cho-
lesterol levels, assisting a person in taking care of them-
selves to reduce their cholesterol levels [18].

	
CSI = cholesterol

saturated fats

N6/N3 ratio: Two important fats that fall within the 
PUFA category are omega 6 and omega 3. To calculate 
a ratio, the total amount of omega-6s and omega-3s is 
divided by one another [47].

	
N6/N3 ratio =

∑
N−6∑
N−3

Definition of metabolic health and its components
Metabolic health state was described using the Karelis 
criteria as follows: hs-CRP ≤ 3.0 mg/L, TG ≤ 1.7 mmol/L, 
HDL-C ≥ 1.3 mmol/L and no treatment, LDL-C ≤ 2.6 
mmol/L and no treatment, and HOMA-IR ≤ 2.7 [48]. A 
metabolic health diagnosis is made when at least four 
of the symptoms are present. Thus, based on metabolic 
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health, individuals are divided into two groups, MHO 
and MUO.

Physical activity assessment
Physical activity level was assessed using the Interna-
tional Physical Activity Questionnaire (IPAQ), which has 
been validated in adult Iranian women [49]. Participants 
were asked about time spent walking, and moderate and 
strenuous activity in the previous week. Then, each exer-
cise duration was converted to minutes per week and the 
metabolic equivalent of the task (MET/minutes/week) 
was calculated. Based on a list of typical daily activities, 
scores were assigned based on how often and how long 
mild, moderate, high, and extremely high-intensity activi-
ties were performed.

Genotyping and GRS
The salting-out approach was used for DNA extraction 
[50]. A 1% agarose gel was used to monitor DNA integ-
rity and a Nanodrop 8000 spectrophotometer (Thermo 
Scientific, Waltham, MA, USA) was used to measure 
DNA concentration. SNPs were genotyped using the 
PCR-allele method, which is carried out by the TaqMan 
Open Array (Life Technologies Corporation, Carlsbad, 
CA, USA) [51]. Previous work [52] was used to guide the 
choice of the MC4R gene primer. Polymerase chain reac-
tion (PCR) was utilized to detect MC4R (rs17782313) 
using the following primers: 5-​A​A​G​T​T​C​T​A​C​C​T​A​C​C​A​
T​G​T​T​C​T​T​G​G-3 and 5-​T​T​C​C​C​C​C​T​G​A​A​G​C​T​T​T​T​C​T​T​
G​T​C​A​T​T​T​T​G​A​T-3 are the forward and reverse primers, 
respectively. Then, fragments with the three genotypes 
CC, CT, and TT were identified. For CAV-1 (rs3807992), 
we used PCR with the forward primer 3′​A​G​T​A​T​T​G​A​C​
C​T​G​A​T​T​T​G​C​C​A​T​G 5′ and the reverse primer 5′​G​T​
C​T​T​C​T​G​G​A​A​A​A​A​G​C​A​C​A​T​G​A 3′. Then, fragments 
with the three genotypes GG, GA, and AA were identi-
fied. We utilized the following PCR primers for Cry1 
(rs2287161): forward primer 5′-​G​G​A​A​C​A​G​T​G​A​T​T​G​G​
C​T​C​T​A​T​C​T 3′ and reverse primer 5′-​G​G​T​C​C​T​C​G​G​T​
C​T​C​A​A​G​A​A​G-3′. Then, pieces with the three genotypes 
CC, GC, and GG were identified. MC4R (rs17782313), 
CAV-1 (rs3807992), and Cry-1 (rs2287161) were com-
bined to form the GRS. For each SNP, genotypes were 
assigned as 0,1, or 2 according to risk alleles for increased 
BMI. In this method, the risk alleles from the three SNPs 
are used without weighting to generate the GRS. Each 
point on the GRS scale, which runs from 0 to 6, repre-
sents one risk allele. On the GRS scale, higher scores are 
interpreted as indicating a stronger genetic propensity to 
higher BMI [53].

Statistical analyses
P values less than 0.05 were considered statistically signif-
icant using SPSS software, version 26. P values between 

0.05 and 0.07 were considered marginally significant. 
The Kolmogorov-Smirnov test was used to determine 
whether quantitative variables were normally distributed 
(P value > 0.05). Categorical variables were presented as 
numbers and percentages, and all data were reported as 
means and standard deviations (SD). Pearson’s chi-square 
test was used to assess the Hardy-Weinberg Equilibrium 
and to compare categorical variables. One-way analysis 
of variance (ANOVA) was used to assess the relation-
ship between eating indices, anthropometric measure-
ments, and biochemical measurements. Analysis of 
covariance (ANCOVA) was applied to eliminate con-
founding results. A generalized linear model (GLM) was 
used to estimate the interactions between GRS and fatty 
acid quality indices in both crude and adjusted models. 
Results were adjusted for energy intake, age, BMI, and 
PA.

Results
Descriptive characteristics of the study sample
The current study was carried out in 279 women with 
overweight or obesity participated. Individuals’ age, 
weight, BMI, CSI, and N6/N3 mean and SD were 
36.48 ± 8.45 years, 79.99 ± 10.88  kg, 30.73 ± 3.72  kg/m2, 
12.65 ± 5.29, and 12.65 ± 0.10, respectively.

General characteristics of the study population according 
to tertile categories of CSI and N6/N3 in women with 
overweight or obesity
The main characteristics of the study population in rela-
tion to tertile categories of CSI and N6/N3 in women 
with overweight or obesity are presented in Table  1. 
Before adjustment for age, BMI, total energy intake, and 
PA, a significant difference across CSI for age (P = 0.02) 
was found although no significant differences were found 
for other tertiles of CSI. No variables had a significant 
association with N6/N3 tertiles, but after controlling for, 
a marginally significant difference for hs-CRP was seen in 
individuals with higher N6/N3 (P = 0.07) (Table 1).

General characteristics of the study population according 
to tertile categories of GRS in women with overweight or 
obesity
Apart from the significant difference for height (P = 0.01), 
there was a marginally significant difference for BMI 
(P = 0.05) in the crude model. After adjusting for age, 
BMI, PA, and total energy intake, the significant associa-
tions were not maintained. There were also no significant 
differences for the remaining parameters across GRS 
(Table 2).



Page 5 of 12Rasaei et al. BMC Medical Genomics           (2025) 18:16 

Variables† CSI
Mean ± SD P-value P-valueb

T1 (n = 99) T2 (n = 104) T3 (n = 76)
Age (years) 37.97 ± 8.31 36.51 ± 8.23 34.48 ± 8.64 0.02 0.27
PA (MET-min/week) 855.11 ± 1067.64 1113.51 ± 1190.64 1003.86 ± 961.72 0.29 0.45
Anthropometric measurements
Weight (kg) 78.78 ± 9.91 80.58 ± 11.53 80.76 ± 11.19 0.38 0.74a

Height (cm) 160.57 ± 5.94 161.58 ± 5.69 161.94 ± 5.82 0.25 0.89a

WC (cm) 97.45 ± 8.49 98.83 ± 9.80 99.07 ± 9.67 0.44 0.83a

WHR (ratio) 0.92 ± 0.047 0.93 ± 0.054 0.93 ± 0.051 0.41 0.80a

BMI (kg/m2) 30.62 ± 3.54 30.80 ± 3.79 30.77 ± 3.89 0.94 0.97a

VFL (cm2) 17.16 ± 19.87 16.78 ± 13.49 15.67 ± 3.37 0.78 0.49a

FFMI 17.82 ± 1.43 19.24 ± 12.86 17.80 ± 1.41 0.35 0.45a

FMI 12.89 ± 2.99 12.89 ± 2.94 12.96 ± 3.06 0.98 0.92a

Metabolic factors
TC (mmol/l) 4.77 ± 0.807 4.76 ± 1.02 4.69 ± 0.93 0.85 0.66
TG (mmol/l) 1.39 ± 0.91 1.40 ± 0.79 1.27 ± 0.55 0.57 0.68
HDL (mmol/l) 1.22 ± 0.26 1.20 ± 0.31 1.19 ± 0.21 0.72 0.87
LDL (mmol/l) 2.45 ± 0.59 2.40 ± 0.65 2.44 ± 0.60 0.81 0.38
HOMA index 3.42 ± 1.40 3.17 ± 1.17 3.48 ± 1.27 0.26 0.42
hs.CRP (mg/l) 3.75 ± 4.31 3.99 ± 4.31 5.06 ± 5.29 0.20 0.23
Education%(n) 0.20
Illiterate 3 (3) 0 (0) 0.0 (0)
Primary education 46 (6) 30.8 (4) 23.1 (3)
Intermediate Education 52.9 (9) 23.5(4) 23.5(4)
High school education 57.1 (4) 14.3 (1) 28.6 (2)
Diploma 32.1 (26) 43.2 (35) 24.7 (20)
Postgraduate education 48 (12) 28 (7) 24 (6)
Bachelor’s degree and higher 29.3 (39) 39.8 (53) 30.8 (41)
Marriage%(n) 0.33
Married 35.9 (78) 36.9 (80) 27.2 (59)
Single 35.2 (19) 37 (20) 27.8 (15)
Away from spouse for more than 6 months 0.0 (0) 100.0 (1) 0.0 (0)
Dead spouse 0.0 (0) 0.0 (0) 100.0 (2)
Divorce 40 (2) 60(3) 0.0 (0)
Obesity phenotype 0.90
MH 45.3 (29) 37.5 (24) 17.2 (11)
MUH 32.7 (55) 37.5 (63) 29.8 (50)
Variables† N6/N3

Mean ± SD P-value P-valueb

T1(n = 99) T2(n = 104) T3(n = 76)
Age (years) 35.95 ± 8.20 36.08 ± 8.45 37.40 ± 8.72 0.43 0.29
PA (MET-min/week) 960.36 ± 926.07 1192.29 ± 1445.85 812.75 ± 727.60 0.08 0.14
Anthropometric measurements
Weight (kg) 81.12 ± 10.74 80.84 ± 11.89 78.01 ± 9.77 0.09 0.37a

Height (cm) 162.02 ± 5.47 161.79 ± 5.77 160.15 ± 6.09 0.05 0.72a

WC (cm) 98.81 ± 9.13 99.62 ± 10.11 96.79 ± 8.49 0.10 0.18a

WHR (ratio) 0.92 ± 0.047 0.94 ± 0.055 0.92 ± 0.049 0.07 0.14a

BMI (kg/ m2) 30.90 ± 3.93 30.91 ± 3.63 30.37 ± 3.61 0.53 0.46a

VFA (cm2) 15.58 ± 3.32 19.06 ± 24.55 15.20 ± 3.14 0.13 0.07a
FFMI 17.91 ± 1.35 19.47 ± 13.52 17.63 ± 1.41 0.23 0.43a
FMI 13.02 ± 3.14 12.86 ± 2.86 12.84 ± 2.97 0.90 0.92a
Metabolic factors

Table 1  General characteristics of study population according to tertile categories of CSI and N6/N3 in obese and overweight women 
(n = 279)
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Dietary intake of the study population according to tertile 
categories of CSI and N6/N3 in women with overweight or 
obesity
Greater CSI was associated with higher amounts of 
refined grains, vegetables, fish, poultry, egg, red meat, 
protein, carbohydrate, total fat, cholesterol, polyun-
saturated fatty acids (PUFA), saturated fatty acids (SFA), 
linoleic acid, eicosapentaenoic acid (EPA), and docosa-
hexaenoic acid (DHA). Significant differences were also 
observed between higher tertile of N6/N3 and lower con-
sumption of fruits, monounsaturated fatty acids (MUFA), 
PUFA, oleic acid, and linoleic acid (Table 3).

The interactions between GRS and CSI and N6/N3 on 
obesity phenotype
Using the GLM, the interactions between GRS with CSI 
and N6/N3 on the obesity phenotype were examined. 
In a multivariate-adjusted model 2 controlling for con-
founders such as age, BMI, energy, and PA, we found a 
significant interaction between GRS and N6/N3 (β = 2.26, 
95% CI: 0.008 to 4.52, P = 0.049); higher N6/N3 adherence 

was more related to a higher MUH obesity phenotype 
among individuals with greater GRS. Marginally signifi-
cant interactions were also seen between GRS and N6/
N3 in the crude model (β = 1.92, 95% CI: -0.06 to 3.91, 
P = 0.058) and multivariate-adjusted model 1 controlling 
for the covariates including age and energy (β = 2.00, 95% 
CI: -0.05 to 4.05, P = 0.057). In both crude and adjusted 
models, no significant interactions between GRS and CSI 
were detected (Table 4).

Discussion
To the best of our knowledge, the present study is the 
first to investigate the interaction between GRS and CSI 
and N6/N3 indices in women with healthy and unhealthy 
obesity phenotypes. Our study shows that the higher ter-
tile of dietary N6/N3 intake is associated with a higher 
HOMA index, suggesting a link to insulin resistance, 
and a slight decrease in CRP, a marker of inflammation. 
Additionally, higher N6/N3 intake was associated with 
lower intakes of fruits, MUFA, PUFA, oleic acid, and lin-
oleic acid. Our study indicates a significant interaction 

TC (mmol/l) 4.61 ± 0.75 4.77 ± 0.97 4.85 ± 1.01 0.26 0.10
TG (mmol/l) 1.33 ± 0.76 1.36 ± 0.81 1.39 ± 0.79 0.88 0.23
HDL (mmol/l) 1.19 ± 0.26 1.22 ± 0.28 1.20 ± 0.27 0.72 0.81
LDL (mmol/l) 2.40 ± 0.52 2.44 ± 0.64 2.45 ± 0.66 0.83 0.89
HOMA index 3.22 ± 1.27 3.23 ± 1.27 3.54 ± 1.30 0.19 0.03
hs.CRP (mg/l) 4.64 ± 4.80 3.97 ± 4.61 3.98 ± 4.43 0.59 0.07
Education%(n) 0.58
Illiterate 0.0 (0) 66.7 (2) 33.3 (1)
Primary education 30.8 (4) 53.8 (7) 15.4 (2)
Intermediate Education 35.3 (6) 23.5 (4) 41.2 (7)
High school education 28.6 (2) 42.9 (3) 28.6 (2)
Diploma 37.0 (30) 32.1 (26) 30.9 (25)
Postgraduate education 16 (4) 40 (10) 44 (11)
Bachelor’s degree and higher 35.3 (47) 30.8 (41) 33.8 (45)
Marriage%(n) 0.59
Married 32.7 (71) 33.6 (73) 33.6 (73)
Single 33.3 (18) 33.3 (18) 33.3 (18)
Away from spouse for more than 6 months 0.0 (0) 0.0 (0) 100.0 (1)
Dead spouse 100.0 (2) 0.0 (0) 0.0 (0)
Divorce 40.0 (2) 40.0 (2) 20.0 (1)
Obesity phenotype 0.82
MH 29.7 (19) 32.8 (21) 37.5 (24)
MUH 33.9 (57) 31 (52) 35.1 (59)
CSI: cholesterol to saturated fat index; BMI: body mass index; HDL: high-density lipoprotein; HOMA; homeostatic model assessment; hs-CRP: high-sensitivity 
C-reactive protein; SD: standard deviation T: tertile; TC: total cholesterol; TG: triglyceride; VFL: visceral fat level, MH: metabolic healthy; MUH: metabolic unhealthy; 
IPAQ: International Physical Activity Questionnaires; FFMI: fat-free mass index; FMI: fat mass index, WC: waist circumference; WHR: waist to hip ratio

Values are represented as means (SD)

Categorical variables: % (n)

† Calculated by analysis of variance (ANOVA)

b: ANCOVA was performed to adjust potential confounding factors (age, BMI, energy intake, physical activity)

a: BMI is considered as a collinear variable for anthropometric measurements and these variables are adjusted for Age, physical activity, and total energy intake

p < 0.05 was considered significant

Table 1  (continued) 
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between GRS and dietary N6/N3 intake, where women 
consuming higher amounts of N6/N3 have a higher 
genetic risk of the unhealthy phenotype of obesity.

In our study, significant interactions were found 
between the 3-SNP GRS including MC4R, CAV-1, and 
CRY, and an intake of N6/N3 on obesity. It has been 
shown to be associated with an increased risk of morbid-
ity and mortality [54, 55]. We found significant interac-
tions between GRS and N6/N3, where a higher N6/N3 
intake was found to be associated with greater obesity in 
individuals. This suggests that women consuming higher 
amounts of n-6 fatty acids may have a higher genetic risk 
for developing an unhealthy obesity phenotype. Thus, 
dietary fatty acid composition may play a critical role in 
modulating genetic susceptibility to obesity.

Despite numerous studies examining dietary fat, 
the results have often been inconsistent. For instance, 
a study of 124 adults living in the UK found a negative 
correlation between plasma n-3 PUFA concentrations 
and anthropometric measurements [56], while another 
study involving 7,983 women living in the US reported 
positive associations [57]. Furthermore, an RCT involv-
ing lean fish (3150 g portions of cod per week) and fatty 
fish (3150 g portions of salmon per week) demonstrated 
weight loss in participants consuming these diets [58]. 
However, results from a meta-analysis indicated that n-3 
PUFAs had no significant effect on reducing body weight 
and BMI in overweight/obese subjects [59]. Results of a 

six-week RCT of 195 UK adults showed no differences 
in anthropometric measures between three intervention 
diets containing specific fatty acid compositions (SFA-
rich diet, MUFA-rich diet, or omega-6 PUFA-rich diet) 
[60]. Conflicting evidence regarding dietary fat intake 
and its effect on obesity traits highlights the importance 
of considering both genetic and lifestyle factors. This is 
particularly relevant in diverse populations, as genetic 
heterogeneity may influence how dietary fat affects obe-
sity risk [61]. Investigating gene-diet interactions is cru-
cial for understanding the underlying mechanisms of 
obesity and its phenotypes [62].

Moreover, our findings align with previous research 
linking dietary fat to obesity phenotypes. A study involv-
ing obese adolescents with fatty liver disease indicated 
that a lower intake of N6/N3 PUFA could improve met-
abolic phenotypes [63]. In childhood obesity studies, 
MUO was associated with higher n-6 and n-9 fatty acids, 
while MHO correlated with higher n-3 fatty acid concen-
trations [64]. Further research on 171 metabolically obese 
and non-obese adults revealed that those with MUO 
had higher total PUFA and n-6 PUFA intakes, while n-3 
PUFA intake was lower in these individuals [65].

The conflicting evidence regarding dietary intake’s 
impact on obesity traits may be attributed to genetic 
heterogeneity and the gene-diet interactions in diverse 
ethnic groups. Therefore, a comprehensive understand-
ing of it’s pathophysiology necessitates consideration of 

Table 2  General characteristics of the study population according to tertile categories of GRS in obese and overweight women 
(n = 279)
Variables† GRS

Mean ± SD P-value P-value b
Low genetic risk score (n = 114) Moderate genetic risk score (n = 64) High genetic risk score (n = 101)

Age (years) 35.98 ± 8.74 36.65 ± 8.48 36.94 ± 8.15 0.69 0.90
Anthropometric measurements
Weight (kg) 80.00 ± 10.32 78.55 ± 11.12 80.90 ± 11.35 0.40 0.81 a

Height (cm) 162.56 ± 5.51 160.77 ± 6.29 160.27 ± 5.66 0.01 0.12 a

WC (cm) 97.71 ± 9.01 98.05 ± 9.19 99.44 ± 9.73 0.37 0.40
BMI (kg/ m2) 30.22 ± 3.54 30.53 ± 3.44 31.43 ± 4.00 0.05 0.18
BF% 40.55 ± 4.89 41.79 ± 4.81 41.75 ± 6.00 0.17 0.10
Blood pressure
SBP (mmHg) 110.50 ± 11.88 111.12 ± 15.20 111.98 ± 14.24 0.73 0.86
DBP (mmHg) 77.34 ± 9.74 77.64 ± 10.09 77.76 ± 9.22 0.95 0.76
Metabolic factors
FBS (mg/dl) 87.05 ± 9.04 86.03 ± 7.44 88.34 ± 11.53 0.37 0.69
TC (mg/dl) 187.07 ± 34.38 184.49 ± 39.12 179.23 ± 35.01 0.34 0.25
TG (mg/dl) 122.10 ± 67.92 109.47 ± 51.66 128.08 ± 81.78 0.29 0.30
HDL (mg/dl) 47.04 ± 9.85 48.43 ± 12.41 45.06 ± 9.98 0.16 0.24
SD: Standard deviation; GRS: Genetic risk score; BMI: Body mass index; WC: Waist circumference; BF: Body fat; SBP: Systolic blood pressure; DBP: Diastolic blood 
pressure; FBS: Fasting blood sugar; TG: Triglyceride; TC: Total cholesterol ; HDL: High density lipoprotein

† Calculated by analysis of variance (ANOVA)

b: Adjusted for age, BMI, physical activity, and total energy intake

a: BMI is considered collinear and this variable is adjusted for Age, physical activity, and total energy intake

P < 0.05 was considered significant
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Variables† CSI
Mean ± SD p-value*
T1 (n = 99) T2 (n = 104) T3 (n = 76)

Food groups
Whole grains (g/d) 53.24 ± 47.75 61.59 ± 54.19 77.42 ± 73.40 0.82
Refined grains (g/d) 331.80 ± 219.09 379.17 ± 191.55 397.52 ± 219.72 0.01
Nuts (g/d) 9.45 ± 10.99 14.59 ± 15.63 21.40 ± 20.64 0.25
Legumes (g/d) 42.47 ± 34.57 51.43 ± 42.42 46.40 ± 42.31 0.27
Vegetables (g/d) 288.84 ± 183.46 424.89 ± 241.68 445.77 ± 262.62 0.003
Fruits (g/d) 388.93 ± 312.69 510.63 ± 334.57 648.63 ± 34.94 0.92
Fish (g/d) 7.06 ± 6.33 12.59 ± 12.24 15.62 ± 15.97 < 0.001
Poultry (g/d) 23.03 ± 18.74 35.25 ± 26.63 50.75 ± 62.74 0.002
Egg (g/d) 12.60 ± 7.02 21.47 ± 9.40 33.85 ± 17.9 < 0.001
Red meat (g/d) 12.20 ± 8.51 22.38 ± 16.72 32.84 ± 23.24 < 0.001
Nutrient intake
Energy (kcal/d) 2136.53 ± 601.19 2650.61 ± 674.27 3151.67 ± 612.17 -
Protein (g/d) 66.53 ± 17.27 91.41 ± 20.92 112.36 ± 28.38 < 0.001
Carbohydrate (g/d) 305.72 ± 102.04 385.51 ± 120.18 435.97 ± 96.75 < 0.001
Total fat (g/d) 78.52 ± 29.67 91.87 ± 26.72 116.48 ± 30.52 0.03
TC (g/d) 158.47 ± 28.57 242.94 ± 25.18 387.88 ± 95.41 < 0.001
MUFA (g/d) 27.06 ± 11.69 29.95 ± 8.87 37.72 ± 10.50 0.05
PUFA (g/d) 18.96 ± 10.07 19.46 ± 7.35 21.64 ± 7.44 < 0.001
SFA (mg/d) 20.80 ± 6.43 26.59 ± 6.44 39.04 ± 12.35 < 0.001
Trans fat (mg/d) 0.0007 ± 0.002 0.0005 ± 0.001 0.001 ± 0.004 0.05
Oleic acid (g/d) 24.86 ± 11.50 26.86 ± 8.71 33.18 ± 9.97 0.06
Linolenic acid (g/d) 1.03 ± 0.66 1.19 ± 0.54 1.50 ± 0.61 0.46
Linoleic acid (g/d) 16.85 ± 9.56 16.76 ± 7.10 18.13 ± 7.14 < 0.001
EPA (g/d) 0.01 ± 0.02 0.03 ± 0.03 0.04 ± 0.04 < 0.001
DHA (g/d) 0.06 ± 0.06 0.11 ± 0.12 0.14 ± 0.13 < 0.001
Variables† N6/N3

Mean ± SD P-value*

T1(n = 93) T2(n = 93) T3(n = 93)
Food groups
Whole grains (g/d) 76.88 ± 67.78 70.52 ± 59.97 41.42 ± 38.36 0.17
Refined grains (g/d) 489.62 ± 239.45 340.17 ± 194.30 272.29 ± 117.29 0.46
Nuts (g/d) 21.11 ± 19.00 15.81 ± 17.75 6.95 ± 6.07 0.36
Legumes (g/d) 51.82 ± 40.69 52.32 ± 44.80 36.50 ± 31.08 0.18
Vegetables (g/d) 439.80 ± 243.54 417.86 ± 256.50 289.23 ± 183.76 0.06
Fruits (g/d) 750.11 ± 382.63 439.53 ± 243.73 325.48 ± 209.00 0.04
Fish (g/d) 13.75 ± 15.65 11.24 ± 11.07 9.36 ± 8.81 0.99
Poultry (g/d) 45.60 ± 55.96 31.70 ± 29.99 28.12 ± 23.10 0.32
Egg (g/d) 25.27 ± 17.06 22.53 ± 13.63 17.38 ± 10.67 0.38
Red meat (g/d) 31.64 ± 20.16 20.75 ± 19.16 12.47 ± 8.39 0.05
Nutrient intake
Energy (kcal/d) 3468.72 ± 402.67 2545.52 ± 190.36 1799.81 ± 271.01 -
Protein (g/d) 114.98 ± 24.09 87.51 ± 17.49 62.37 ± 13.30 0.58
Carbohydrate (g/d) 502.95 ± 82.83 353.96 ± 47.13 255.92 ± 53.31 0.09
Total fat (g/d) 122.50 ± 27.88 95.28 ± 20.53 63.74 ± 15.19 0.09
MUFA (g/d) 39.10 ± 9.87 32.22 ± 9.23 21.80 ± 6.55 0.03
PUFA (g/d) 24.25 ± 7.54 21.12 ± 8.80 14.24 ± 5.48 0.02
SFA (mg/d) 37.54 ± 11.27 27.37 ± 6.58 18.86 ± 5.14 0.38
Trans fat (mg/d) 0.001 ± 0.002 0.0007 ± 0.002 0.0008 ± 0.003 0.60
Oleic acid (g/d) 34.87 ± 9.55 29.18 ± 9.32 19.55 ± 6.46 0.02

Table 3  Dietary intake of the study population according to tertile categories of CSI and N6/N3 in obese and overweight women 
(n = 279)
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both genetic and lifestyle factors [66]. Some experimental 
designs have successfully investigated the gene-environ-
ment interactions that could explain the “missing herita-
bility” linked to complex obesity phenotypes.

It is proven some experimental designs investigate the 
interaction of gene-environment to explain the ‘‘missing 
heritability’’ related to the complex obesity phenotypes 
[67]. Several studies have demonstrated that long-chain 
n-3 PUFA intake may affect adiposity phenotypes [68, 
69]. For instance, a study indicated that those with higher 
obesity-related GRS were more likely to accumulate fat 
when consuming n-3 PUFAs. Moreover, individuals with 
higher obesity-related GRS were at risk of fat accumula-
tion when they consumed n-3 PUFAs [70]. Furthermore, 
other studies demonstrated that fish consumption of 
long-chain n-3 PUFAs moderate genetic influences on 
long-term BMI and weight changes, with significant cor-
relations between GRS and weight loss among those with 
higher n-3 PUFA intake [71]. The result of a study on the 
interaction between dietary unsaturated fat consumption 
and GRS on body fat mass index (FMI) has been demon-
strated [72].

Research suggests that genetic predisposition to obe-
sity can interact significantly with saturated fat intake. 
One study found that individuals in the highest genetic 
predisposition quartile (Quartile 4) who consumed more 
SFA showed an increase of 1.8  kg/m² in BMI and an 
additional 3.7 cm in WC compared to those with lower 
SFA intake but the same genetic risk [73]. These findings 
indicate that reducing SFA consumption may help miti-
gate the genetic risk associated with central obesity [74]. 

Further, a 4-SNP GRS analysis revealed significant inter-
actions between dietary fat types—including SFA, PUFA, 
and MUFA—and their impact on WC, suggesting that 
dietary fat composition could influence obesity-related 
outcomes based on genetic profiles [75]. Another study 
demonstrated that the balance between dietary polyun-
saturated and saturated fats interacts with the FTO gene, 
where carriers of the A allele had a 0.43-fold higher obe-
sity risk than TT allele carriers, regardless of their intake 
ratio [76]. These findings underscore the complex gene-
diet interactions that may shape individual obesity risk 
and the potential for tailored dietary strategies to coun-
teract genetic predispositions to obesity.

While limited studies have examined the interaction 
between GRS fatty acid intake concerning obesity phe-
notypes, it is critical to recognize that obesity’s genetic 
influence is polygenic [61, 77]. Thus, larger-scale studies 
are necessary to replicate our findings regarding GRS-
fat intake interactions. Systematic reviews indicate that 
reducing dietary intake of SFA, TFA, and n-6 PUFA while 
enhancing MUFA and n-3 PUFA consumption can effec-
tively reduce obesity risk among genetically susceptible 
individuals [78].

The mechanisms underlying how obesity-related genes 
interact with n-3 PUFAs remained unclear. However, evi-
dence suggests that regular consumption of n-3 PUFAs 
may help reduce adiposity in humans [79] by inhibit-
ing adipogenesis [80] and stimulating fat oxidation [81]. 
Lipoprotein lipase (LPL), a key enzyme in lipid metabo-
lism, plays a crucial role in lipid distribution in various 
tissues and is implicated in obesity progression [82, 83]. 

Table 4  The interaction between GRS with CSI and N6/N3 on obesity phenotype in obese and overweight women (n = 279)
Variable GRS*CSI GRS*N6/N3

MUH MUH

B 95% CI P-value B 95% CI P-value
Crude -0.01 -0.07 to 0.04 0.60 1.92 -0.06 to 3.91 0.058
Model1 -0.01 -0.07 to 0.04 0.61 2.00 -0.05 to 4.05 0.057
Model2 -0.01 -0.07 to 0.05 0.76 2.26 0.008 to 4.52 0.049
GLM was performed to identify the interaction between GRS and CSI and N6/N3 on obesity phenotype. MUH: metabolically unhealthy phenotype

Model 1 = adjusted for potential confounding factors including (age and Energy)

Model 2 = adjusted for potential confounding factors including (age, BMI, energy, and physical activity)

P < 0. 1 was considered significant

Metabolically healthy was considered as reference

Linolenic acid (g/d) 1.58 ± 0.55 1.26 ± 0.67 0.82 ± 0.40 0.07
Linoleic acid (g/d) 20.80 ± 7.42 18.44 ± 8.59 12.27 ± 5.34 0.03
EPA (g/d) 0.03 ± 0.04 0.03 ± 0.04 0.02 ± 0.02 0.83
DHA (g/d) 0.12 ± 0.13 0.10 ± 0.12 0.08 ± 0.08 0.94
CSI: Cholesterol to saturated fat index; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; MUFA; monounsaturated fatty acid; PUFA: polyunsaturated fatty 
acid; SFA: saturated fatty acid; T: tertile; TC: total cholesterol

Values are represented as means (SD)

P-value*: ANCOVA was performed to adjust the potential confounding factor (energy intake)

P < 0.05 was considered significant

Table 3  (continued) 
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Additionally, cholesteryl ester transfer protein (CETP) 
mediates the transport of cholesteryl esters and triglyc-
erides between lipoproteins and is more active in obese 
individuals [84]. Based on a study, increased CETP activ-
ity was observed in obese individuals [85]. Diets high in 
SFA have also been shown to reduce cholesterol efflux, 
further contributing to obesity development [86, 87].

Strengths and limitations
Potential strengths of our study include the assessment 
of interactions between genes and diet in the Iranian 
population, comprehensive coverage of established BMI-
associated genetic variants, and the use of well-validated 
dietary questionnaires. In addition, some limitations 
of this study need attention. First, our study was con-
ducted only in the Iranian population, which limits its 
generalizability to other populations. Second, the N6/
N3 PUFA*GRS interaction with adiposity phenotypes 
may have been influenced by total fat intake. These data 
revealed that the interactions between the GRS gene and 
N6/N3 PUFAs were not substantially confounded by 
total fat intake and that N6/N3 PUFA intake may modu-
late obesity susceptibility genes.

Conclusion
The findings of this study suggest that a higher dietary 
N6/N3 PUFA intake may amplify the genetic risk of 
metabolically unhealthy obesity among Iranian adults 
with higher GRS. Specifically, those with a higher N6/
N3 ratio appear more likely to exhibit obesity phenotypes 
when carrying metabolic risk alleles, highlighting the 
significance of gene-diet interactions in obesity risk and 
emphasizing the importance of individualized dietary 
advice based on each ethnic group. While the association 
between GRS and obesity phenotypes was observed with 
the N6/N3 ratio, no significant interactions were found 
between GRS and the CSI on obesity risk. This suggests 
that not all fat quality indices have the same impact when 
interacting with genetic risk, pointing to the specificity 
of N6/N3 PUFAs in this relationship. Given the study’s 
focus on a limited number of SNPs, future research 
should extend to include a broader array of SNPs and 
polygenic risk scores (PRS) to deepen our understanding 
of how gene-diet interactions affect obesity susceptibil-
ity. Replicating these findings in diverse populations with 
varied dietary habits will provide a more comprehensive 
view and support the development of effective, personal-
ized dietary recommendations.
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