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Abstract 

Background New diagnostic tools are needed to improve the diagnosis and risk stratification of cutaneous mela-
noma. Disease-specific microRNA signatures have been previously described via NanoString profiling of solid biopsy 
tissue and plasma. This study validated these signatures via next-generation sequencing technology and compared 
their performance against clinical metrics and other published melanoma signatures.

Methods RNA from 64 plasma and 60 FFPE biopsy samples from individuals with invasive melanoma or related 
benign/control phenotypes was extracted and enriched for microRNA. RNA sequencing was performed to compute 
MEL38/MEL12 signature scores. The results were evaluated with published NanoString and RNA sequencing datasets, 
comprising 548 solid tissue samples and 217 plasma samples, to predict disease status and patient outcome.

Results The MEL38 diagnostic signature classifies patients into discrete diagnostic groups via RNA sequencing 
in either solid tissue or plasma (P < 0.001). In solid tissue, the prognostic MEL12 signature stratifies patients into low-, 
intermediate- and high-risk groups, independent of clinical covariates. The hazard ratios for 10-year overall survival, 
based on observed survival intervals, were 2.2 (MEL12 high-risk vs low-risk, P < 0.001) and 1.8 (intermediate-risk vs 
low-risk, P < 0.001), outperforming other published prognostic models. MEL12 also exhibited prognostic significance 
in the plasma of 42 patients with invasive disease.

Conclusions The MEL38 and MEL12 signatures can be assessed in either solid tissue or plasma using RNA-seq 
and are strong predictors of disease state and patient outcome. Compared with other genomic methods, MEL12 
was shown to be the strongest predictor of poor prognosis. MicroRNA expression profiling offers objective, accurate 
genomic information about a patient’s likelihood of invasive melanoma and prognosis.
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Background
MicroRNAs play crucial roles in regulating gene expres-
sion and have emerged as a potential biomarker for the 
diagnosis and prognosis of early-stage melanoma [1–4]. 
Our previous work resulted in two microRNA signatures, 

MEL38 for diagnosis and MEL12 for prognosis, identified 
via NanoString nCounter microRNA expression profil-
ing on both solid biopsy tissue and plasma samples rep-
resenting the spectrum of normal skin, benign naevi, and 
stage 0 to IV invasive melanoma.

MEL38 mirrors the early molecular changes that occur 
during the transition from benign to malignant melano-
cytic lesions. This diagnostic signature comprises 38 
miRNAs that are differentially expressed between benign 
nevi and invasive melanoma. These microRNAs regu-
late genes involved in cell proliferation, apoptosis, and 
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migration, capturing the early genetic and epigenetic 
alterations that signify the onset of malignancy [2, 3]. 
In contrast, MEL12 represents miRNAs that influence 
advanced tumour behaviours and patient survival. This 
prognostic signature consists of 12 miRNAs associated 
with tumour progression, metastasis, and therapeutic 
resistance [5].

As a circulating biomarker, MEL38 can detect the 
presence of invasive melanoma at the systemic level, 
including stage IA disease, indicating a need for skin 
examination and additional risk-informed follow-up. 
When MEL38 is used as a cellular biomarker, microRNA 
extracted from an excised melanocytic lesion is used to 
measure the degree of malignancy present and reduce 
the risk of misdiagnosis associated with melanoma histo-
pathology [6].

The companion MEL12 signature comprises microR-
NAs whose expression patterns are correlated with the 
risk of melanoma-specific death. Like MEL38, it was first 
identified as a circulating biomarker via plasma from 
patients with stage I-IV invasive disease; therefore, it 
represents a systemic assessment of a patient and a novel 
approach to identifying individuals most likely to ben-
efit from invasive diagnostic procedures or clinical trial 
enrolment [5].

The NanoString nCounter system employs a colour-
coded molecular barcoding system for the digital quan-
tification of individual miRNAs. Its benefits include 
specific and sensitive detection of low-abundance 

microRNAs without the need for amplification. How-
ever, its small batch size of twelve samples per run limits 
its suitability for high-throughput applications [7, 8]. An 
alternative method, small-RNA next-generation sequenc-
ing (NGS or RNA-seq), involves generating cDNA librar-
ies from miRNA molecules followed by high-throughput 
sequencing. Recent advances in NGS library preparation 
protocols have eliminated the processing bottleneck of 
size-separating agarose gels, increasing the feasibility of 
this method for high-throughput clinical applications [9].

The aim of this study is to validate the use of RNA-seq 
for evaluating the MEL38 and MEL12 microRNA signa-
tures of melanoma in solid and liquid patient samples, as 
summarised in Fig. 1. A secondary objective is to further 
evaluate the performance of these signatures in publicly 
available RNA-seq datasets, encompassing both solid tis-
sue and plasma profiles from individuals with or without 
invasive melanoma. The largest of these datasets is from 
the SKCM (Skin Cutaneous Melanoma) project, which is 
part of The Cancer Genome Atlas (TCGA), from which 
other genomic models of melanoma have been devel-
oped from or validated, enabling direct comparison with 
MEL38/12 [10].

The incorporation of standardised microRNA expres-
sion profiling into the melanoma care path has the 
potential to increase diagnostic accuracy by providing 
personalised and objective information about melanoma 
development and progression at both the systemic and 
local level.

Fig. 1 Schematic diagram of the study design. The diagram demonstrates the samples, datasets and technologies used to validate RNA-seq based 
microRNA profiling of plasma and solid tissue for melanoma diagnosis and prognosis
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Methods
Specimen selection and study design
Sample size calculations were conducted to ensure ade-
quate power for the detection of an area under the curve 
(AUC) ≥ 0.78 with a small-to-moderate effect size, 80% 
power and 95% confidence.

The study began with a set of 60 patient samples 
for FFPE profiling, which were selected from a previ-
ously published series of patient samples on the basis of 
remaining tissue availability [11]. Additionally, 64 previ-
ously analysed plasma samples with sufficient remaining 
sample volume were identified and used for RNA-seq 

profiling [5]. A summary of the clinicopathological vari-
ables for these samples is presented in Table 1.

RNA extraction and quality control
RNA was extracted via the Qiagen miRNeasy FFPE Kit 
(Qiagen, Germany, Part: 217,504) or the Qiagen miRNe-
asy Serum/Plasma Advanced Kit (Part: 217,204), as 
previously described [11, 12]. The extracted RNA from 
the plasma was further purified via Amicon Ultra 0.5 
Centrifugal filter columns (MilliporeSigma, Germany, 
Part UFC501096) for 80 min at 10,000 g. Purified RNA 
concentrations were determined with the Invitrogen 

Table 1 Clinicopathological characteristics of patient specimens used for protocol optimisation and validation of melanoma 
microRNA signatures

Solid tissue (FFPE) cohort (N = 60) Count % Plasma cohort (N = 64) Count %

Age (mean, stdev) 67 (16) Age (mean, stdev) 60 (17)

Sex: Sex:

 Male 34      Male 35 55

 Female 26       Female 29 45

Disease status: Disease status:

Invasive melanoma (n = 28) Invasive melanoma (n = 52)

Clinical stage Clinical stage

 Stage I 5 18     Stage I 4 8

 Stage II 11 39     Stage II 7 13

 Stage III 4 14     Stage III 27 52

 Stage IV 8 29     Stage IV 14 27

Histological subtype:  Histological subtype:

 Epithelioid 1 4     Acral lentiginous 1 2

 Nodular 5 18     Epithelioid / Spindle cell 1 2

 Superficial spreading 10 36     Lentigo maligna 2 4

 Melanoma NOS 12 43     Malignant melanoma, NOS 38 73

    Nodular 5 10

    Superficial spreading 5 10

Other (n = 32)

Naevi 13 41

Histological subtype: Other (n = 12)

 Compound 5 38 Naevi 8 67

 Dysplastic 1 8 Histological subtype:

 Intradermal 4 31     Actinic keratosis 2 25

 Junctional 2 15     Naevi, NOS 1 13

 Solar keratosis 1 8     Seborrheic keratoses 5 63

Melanoma in-situ 4 33

Melanoma in-situ 19 59

Histological subtype: Specimen collection type:

 Melanoma in-situ NOS 6 32     Archival 51 80

 Junctional 1 5     Prospective 13 20

 Lentigo maligna 10 53

 Superficial spreading 2 11
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microRNA Qubit Assay (Thermo Fisher Scientific, USA). 
Part Q32880).

Small‑RNA library preparation and sequencing
The Revvity NEXTFLEX Small RNA-Seq Kit v4 (Revv-
ity, Inc., USA, Part: NOVA-5132–43), which is optimized 
for microRNA profiling and allows for multiplexing up 
to 384 samples, was used for library preparation. Librar-
ies were prepared from 5  ng of small-RNA enriched 
total RNA, incorporating Unique Dual Indexes (UDIs) 
for sequencing on an Illumina instrument. The plasma 
samples included tRNA/YRNA blockers to enrich for 
microRNA content. Library concentrations were meas-
ured via an Agilent 5200 Fragment Analyzer (Agilent, 
Inc., USA) by Micromon Genomics (Monash University, 
Victoria, Australia). Libraries were normalised to 2  nM 
and pooled. Sequencing was performed on an Illumina 
MiSeq system (Illumina, Inc., USA) at loading concen-
tration of 10  pM using the MiSeq Reagent Kit v3 (Part 
MS-102–3003) and version 4.1.0.471 of Illumina Local 
Run Manager software.

Workflow for miRNA identification and quantification 
via RNA‑seq
FASTQ files were generated from Illumina BCL files via 
the GenerateFASTQ Analysis Module of the the Illu-
mina Local Run Manager software (Illumina Inc., USA). 
Data from read 1 (R1), which includes full-length mature 
microRNAs, were used in subsequent steps. Quality 
control involved trimming bases from the 3’ end with a 
minimum Phred quality score threshold of 20, removing 
sequencing adapters, and excluding reads under 10  bp. 
Samples producing fewer than 150,000 total raw reads 
were excluded from further analysis.

Samples that passed these data QC thresholds were 
aligned to miRBase (v22) via Bowtie (version 1.2.2) in 
sRNAbench library mode via full-length alignment and 
two mismatch parameters [13–15]. Reads aligning to 
mature miRNAs in the sense orientation were counted 
and normalized to counts per million (CPM). Additional 
sequence databases were used to identify other RNA 
classes present in the samples: the Ensembl genome 
GRCh38_p13 release 104 and tRNA sequences from 
GtRNAdb and RNAcentralDB v20.

Public RNA‑seq validation datasets
Solid tissue RNA-seq data representing 452 invasive mel-
anoma samples and 37 non melanoma skin samples (1 
actinic keratosis, 1 squamous cell carcinoma, 2 psoriatic 
skin samples and 33 normal skin) were downloaded from 
the DIANA-Lab MicroRNA Tissue-Expression Database 
(DIANA-miTED) in CPM format [16]. Data correspond-
ing to samples originally published by the TCGA SKCM 

consortium were annotated with histopathology stage 
and observed survival (OBS) interval information from 
Xiong et al. [16, 17]. The source studies for these samples 
and the sequencing methods used are provided in the 
Supplementary Information [Additional File 2].

Plasma RNA-seq data from 60 pre-treatment meta-
static melanoma patients and 96 control (cancer-free) 
individuals were obtained from NCBI BioProject 
PRJNA634142. These data were originally generated via 
the HTG EdgeSeq miRNA Whole Transcriptome Assay 
and Illumina sequencing, as published by Bustos, Tran 
[18]. The raw FASTQ files from this study were processed 
to CPM values via sRNAbench [15].

MicroRNA signature calculations and statistical analyses
MicroRNA signature weights used to calculate MEL38/
MEL12 scores were updated for the dynamic range of 
RNA-seq data by refitting the two machine learning 
algorithms as previously described, without feature rese-
lection [3, 5]. Updated MEL38 weights were calculated 
using a linear kernel SVM with default penalty cost [19]. 
Updated MEL12 weights were calculated using principal 
component analysis, using the top two components [20, 
21]. Individual sample scores were then calculated using 
the formula:

where:

Statistical analyses were performed using R Statistical 
Software (v4.1.2; R Core Team 2021), Microsoft Excel 
(Version 2404, Microsoft, Inc., WA, USA), and MedCalc 
(version 22.023). Student’s t-test was used to compare 
means across groups for continuous variables. Intra-
Class Correlation (ICC) coefficient and their 95% con-
fidence intervals were calculated for average measures 
[22]. Receiver Operating Characteristic (ROC) analyses 
were used to assess the association between microRNA 
scores and disease status, with Area Under the Curve 
(AUC) calculated as a measure of diagnostic accuracy. 
Cox proportional hazards regression was used to evaluate 
the association of MEL12 with patient outcome including 
available clinical covariates [23]. All P-value calculations 
were two-sided, and values less than 0.05 were consid-
ered statistically significant.

score =
n

i=0
ωi · xi

n = number of microRNAs in signature (MEL12 or MEL38)

ω = classification weight for i − th microRNA

x = normalised expression level of i − th microRNA
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Results
Quality control and microRNA quantification using 
RNA‑seq
To evaluate the performance of the MEL38 and MEL12 
signatures using RNA-seq technology, we performed 
small-RNA extraction and purification on 60 FFPE 
and 64 plasma samples previously analysed via the 
NanoString platform. The mean concentration of small-
RNA enriched total RNA from the FFPE samples was 
40 ng/μl (range 3 to 146) and 18 ng/ul (range 1 to 100) 
from plasma. The RNA-seq libraries were prepared using 
the NextFlex Small RNA Kit, and Illumina sequencing 
resulted in a mean of 521,699 reads per sample, with no 

significant difference in read numbers between specimen 
types (P-value: 0.36).

After raw data quality control, 59 FFPE and 61 plasma 
RNA-seq profiles were available for alignment and mela-
noma signature calculation. Fifty percent of FFPE and 
71% of plasma reads were mapped to mature microRNAs 
in miRbase, as shown in Fig.  2. With a CPM threshold 
of > 50, the mean number of expressed microRNAs in 
plasma was 1304, whereas it was 721 for FFPE samples 
(P-value for difference < 0.001). The increased detection 
of mature microRNA sequences observed in plasma sam-
ples can be attributed to the Amicon column concentra-
tion step performed during plasma processing or to a 

Fig. 2 RNA-seq profiles from extracted total RNA demonstrating enrichment of microRNAs relative to other RNA species. a Macro-dissected FFPE 
tissue sections. b Plasma samples
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reduced presence of other small RNA types in acellular 
versus cellular tissues.

Additional data processing results are provided in the 
Supplementary Information [Additional File 1].

Visualisation of MEL38 expression profiles
Count-per-million (CPM) normalised RNA-seq MEL38 
expression profiles were extracted from each sample’s 
complete profile, averaged per disease stage, and com-
pared against previously published NanoString results 
using colour-coded heatmaps, as shown in Fig.  3. Both 
technologies capture the increasing or decreasing lev-
els of the microRNAs in the signature between vary-
ing stages of melanoma progression. ICC coefficients of 
MEL38 scores for NanoString versus RNA-seq platforms 
showed good agreement with 0.76 (95% CI: 0.61–0.86) 
for plasma and 0.97 (95% CI:0.94–0.98) for FFPE.

Calculation of MEL38 scores using RNA‑seq data 
and comparison to NanoString results
To calculate MEL38 scores for samples profiled using 
RNA-seq, SVM weights were recalculated for RNA-
seq scale data, as described above. RNA-seq MEL38 

scores were then calculated for each sample and com-
pared to diagnostic classifications using ROC analysis, 
which resulted in an AUC of 1.0 for FFPE samples and 
0.99 for plasma. No significant differences were observed 
between AUCs of RNA-seq vs NanoString datasets using 
the Hanley and McNeil method [24] (Fig. 4).

In the FFPE results, variance analysis within the inva-
sive melanoma subset (i.e. Stage I to IV) revealed signifi-
cant differences in MEL38 scores between early (Stage 
I-II, mean 4.7) and advanced stages (Stage III-IV, mean 
9.7), as shown in Fig.  5a and, which is consistent with 
previously published results [11].

Validation of microRNA signatures using publicly available 
melanoma RNA‑seq data
FFPE/Solid tissue
The solid tissue RNA-seq profiles generated for this study 
were combined with publicly available solid tissue RNA-
seq profiles, resulting in a dataset containing 35 normal/
psoriatic skin samples, 12 nevi, 19 melanoma samples in-
situ, 11 locally invasive melanomas and 365 metastatic 
melanomas (total N = 442, Additional File 2). MEL38 
scores were calculated for each sample as described and 

Fig. 3 MEL38 microRNA expression profiles of plasma samples and solid tissue samples grouped by melanoma stage. The relative differences 
in microRNA expression levels between clinically relevant disease states can be observed in both specimen types and analytical platforms. Dataset 
includes 59 plasma samples and 61 solid tissue samples. Red: high expression, Green: Low expression
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plotted by melanoma stage, revealing complete separa-
tion of invasive melanoma and non-invasive melanoma 
samples (including melanoma in-situ/Stage 0) (P < 0.001, 
Fig.  5a). Within the invasive melanoma subset, MEL38 
scores of metastatic melanoma samples (Stage III/IV) 
were on average threefold higher than locally invasive (I/II) 
melanoma samples (P < 0.001).

In the non-melanoma/other subset, the MEL38 scores of 
benign nevi and melanoma in-situ samples were on average  
1.5 fold higher than normal skin samples (P = 0.001), but 
the difference between nevi and in-situ was not statistically 
significant. These data provide additional validation of the 
ability of the MEL38 signature to differentiate between 
clinically important stages of melanoma development and 
progression using RNA-seq profiling.

Next, the ability of the MEL12 signature to predict 
patient outcome using RNA-seq profiling of solid tis-
sue biopsies was evaluated using 256 samples from the 
TCGA SKCM cohort for which survival data were avail-
able. Patients were classified as low, intermediate or high 
risk on the basis of MEL12 score tertiles, and the dif-
ference in rates of death between each group was com-
pared using Kaplan Meier analysis (Fig.  5b). Log rank 
testing showed the difference in survival between the risk 
groups to be statistically significant (P = 0.002). Hazard 
ratios indicate a 1.7-fold higher rate of death for MEL12 

intermediate- vs low-risk patients (95% CI: 1.2 to 2.5) and 
a 2.3-fold higher rate for patients classified as MEL12 
high risk vs intermediate risk (95% CI: 1.60 to 3.31).

A multivariate Cox proportional hazard (CPH) regres-
sion analysis was performed to assess the significance of 
MEL12 independent to patient age, sex, and AJCC mela-
noma stage. As shown in Table  2, MEL12 stratification 
retained its statistical significance, suggesting the signa-
ture provides additional prognostic information beyond 
conventional clinicopathological variables.

Plasma
The 61 plasma RNA-seq profiles generated for this 
study were combined with 156 profiles from previ-
ously published RNA-seq datasets, resulting in a dataset 
consisting of 217 circulating microRNA profiles from 
individuals with or without invasive melanoma. Plasma-
MEL38 scores were calculated, scaled, and evaluated 
against the clinical diagnosis of each sample. As depicted 
in Fig.  5c, the Plasma-MEL38 score perfectly discrimi-
nates between individuals with or without invasive mela-
noma (P < 0.001). The mean MEL38 score of normal/MIS 
samples was 3.8, whereas it was 6.6 for locally invasive 
melanoma and 7.7 for metastatic melanoma.

We then assessed the prognostic capability of the 
Plasma-MEL12 signature on the 40 RNA-seq profiles 

Fig. 4 ROC comparisons between methods and specimen types. a ROC curve comparison for 59 FFPE samples analysed with both RNA-seq 
and NanoString profiling. AUC for both methods: 1.0 (P < 0.001). b ROC comparison of MEL38 scores for 61 plasma samples profiled using 
both RNA-seq and NanoString. AUC for NanoString scores: 0.98 (P < 0.001), RNA-seq: 0.99 (P < 0.001). Pairwise comparison of curves; P = 0.32 (not 
significantly different)
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with available melanoma-specific survival information. 
MEL12 scores were calculated as described and used to 
assign patients to low-, intermediate- or high-risk groups 
based on cohort-specific tertiles. Kaplan–Meier analy-
sis and log rank testing showed differences in survival 
approaching significance (P = 0.12, Fig.  5d). Notably, no 
deaths occurred among patients classified as low risk 
according to the Plasma-MEL12 signature, highlighting 
its potential prognostic value.

Fig. 5 Signature validation with public datasets. RNA sequencing (RNA-seq) data analysing MEL38 and MEL12 scores in 548 solid tissue and 217 
plasma samples. a Box plot displaying MEL38 scores from RNA-seq analyses of solid tissue biopsies, categorized by disease status or melanoma 
stage. The dashed line depicts the MEL38 score threshold between invasive and non-invasive melanoma. b Kaplan–Meier survival analysis 
of melanoma patients grouped by solid tissue MEL12 scores (OBS). Log-rank test (P = 0.002). c Box plot showing MEL38 scores derived from RNA-seq 
analysis of plasma samples, grouped by disease status. d Kaplan–Meier survival analysis of invasive melanoma patients grouped by plasma MEL12 
expression levels (MSS). Univariate Cox proportional hazards regression, P-value of 0.034. The log-rank test shows a P-value of 0.12

Table 2 Cox proportional hazards regression analysis for 
256 TCGA-melanoma patients (Stage I-IV) including solid tissue 
MEL12 risk groups (OBS)

Covariate P Hazard Ratio 95% CI

Age 0.02 1.01 1.00 to 1.02

Gender = "male" 0.64 0.93 0.67 to 1.28

Melanoma stage (I-IV) < 0.0001 2.48 1.80 to 3.41

MEL12 = "b. intermediate" 0.004 1.81 1.21 to 2.69

MEL12 = "c. high" 0.0001 2.16 1.45 to 3.20
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Benchmarking of MEL12 against other genomic models 
of invasive melanoma
The TCGA SKCM consortium applied a comprehen-
sive array of genomic technologies to a standardised set 
of clinically annotated patient samples, including single 
nucleotide polymorphism (SNP) arrays, DNA whole-
genome sequencing (WGS), whole-exome sequenc-
ing (WES), protein expression arrays and microRNA 
sequencing. Methods to stratify patients into groups 
on the basis of the output of each technology were also 
described, including the mutation subtypes identified 
by WGS (BRAF, RAS, NF1, and Triple-WT). Classifi-
cations of patients in the SKCM cohort using the novel 
121 mRNA signature by Garg et al. (’Cam_121’) was also 
compiled [25].

To compare the prognostic significance of MEL12 
against other published algorithms and genomic plat-
forms, CPH models were calculated for each method, 
using a consistent set of clinical covariates including age, 
sex, clinical stage, and multiple genomic/transcriptomic 
classifications, as published by The Cancer Genome 
Atlas Network [10]. The observed survival data were 
used as the endpoint in each analysis. Hazard ratios and 
95% confidence intervals were compared using a forest 
plot, as shown in Fig.  6. Individual CPH model results 
are provided in the Supplementary Information [Addi-
tional File 3].

Ranking of classification methods by covariate-adjusted 
hazard ratios revealed that the high-risk MEL12 group 
and the ’keratin’ RNA-seq group to have largest values 

(HR: 2.2, significance of variable in model P < 0.001). 
Importantly, this figure surpassed the classification based 
solely on clinical staging (HR: 1.9, P < 0.001), even after 
adjusting for age and sex. This indicates that incorporat-
ing genomic classification methods into prognostic eval-
uations is likely to enhance the precision of clinical risk 
stratification.

In these data, the ability of MEL12 to predict patient 
outcome was superior to that of the Cam_121 signature 
(hazard ratio 2.2 vs 1.6), which Garg et  al. described as 
predicting metastasis better than both clinical covari-
ates and other prognostic signatures available at the time 
of publication [25]. By performing specimen-matched, 
clinical-covariate adjusted, comparisons of various 
approaches to patient stratification, the findings show 
that microRNA expression profiling is equivalent—or 
superior to—protein, messenger RNA or whole-genome 
methods for prediction of patient outcome.

Discussion
Melanoma is a multifaceted disease driven by both local-
ised genomic alterations within melanocytes and sys-
temic interactions with the immune system and tumour 
microenvironment. Our validation of the MEL38 and 
MEL12 microRNA signatures using RNA-seq technology 
reinforces the notion that melanoma development and 
progression are influenced by a complex interplay of local 
and systemic factors [1, 2].

The MEL38 diagnostic signature robustly classifies 
patients into discrete diagnostic groups in both solid 

Fig. 6 Comparative prognostic stratification of TCGA SCKM patients. Forest plot of Cox proportional hazard ratio values for the prediction of overall 
survival risk, using DNA, mRNA, microRNA sequencing or protein array-based classification of patients in the TCGA SKCM cohort (n = 354). Each CPH 
model included age, sex, stage and signature classification class. The keratin RNA-seq cluster (vs immune RNA-seq cluster) and the high-risk MEL12 
signature (vs the low-risk group) had the highest hazard ratios (2.2, P < 0.001), reflecting their robust prognostic ability and independence of clinical 
covariates included in the analysis
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tissue and plasma, while the prognostic MEL12 signa-
ture stratifies patients into risk categories based on their 
survival outcomes. These findings align with previous 
research demonstrating that melanoma progression is 
influenced by genetic mutations, epigenetic changes, and 
immune responses. Importantly, our study revealed that 
these microRNA signatures outperform traditional clini-
cal metrics and other genomic models in predicting dis-
ease status and patient outcomes, thereby offering a more 
comprehensive understanding of melanoma biology and 
its clinical implications.

Next-generation sequencing methods have tradition-
ally been used for biomarker discovery and validation, 
while qPCR or microarray-based methods have been bet-
ter suited for clinical translation owing to their cost and 
throughput advantages. Advances in library preparation 
and automation now present an opportunity to maintain 
the sensitivity of sequencing in a clinical setting, includ-
ing for small RNA-based assays. The introduction of 
magnetic bead-based size selection for RNA sequencing 
libraries has streamlined a previously time-consuming 
stage of the NGS workflow, while also enhancing sample 
purity by removing primer dimers and other contami-
nants. RNA-seq allows the inclusion of up to 384 samples 
in a single run, offering a level of scalability necessary for 
high-throughput clinical use.

RNA-seq offers several practical advantages for micro-
RNA profiling in predicting melanoma patient survival. 
microRNAs are more stable in both tissue and liquid 
biopsies compared to mRNA, allowing for more reliable 
detection [26]  . They are also measurable with greater 
sensitivity than protein assays, due to an amplification 
step   [27]. RNA-seq’s broad dynamic range further facili-
tates consistent fold change calculations relative to array 
platforms [28]. However, RNA-seq for microRNA profil-
ing can have higher initial set-up costs relative to qPCR 
and require more advanced data handling and bioinfor-
matics pipelines, due to size and complexity of the raw 
data generated.

However, limitations to this work include the modest 
size of the plasma MEL12 RNA-seq validation set, due 
to the limited availability of plasma samples from mela-
noma patients with corresponding outcome data. Fur-
thermore, the availability of overall survival (OS) rather 
than melanoma-specific survival (MSS) for patients in 
the TCGA SKCM cohort prevents censoring or excluding 
data from patients who died of non-melanoma related 
causes. Future research should focus on integrating 
these microRNA profiles into routine clinical practice to 
enhance diagnostic accuracy and enable risk-based treat-
ment strategies.

This study is unique in that we compared the MEL12 
signature to genomic signatures generated using a 
range of methods and molecule types, including DNA-, 
mRNA-, and protein-based models, enabling direct 
and objective assessment of model accuracy. In the 
multivariate-adjusted prediction of survival, MEL12 
was strongly correlated with OBS, notably outperform-
ing the Cam_121 messenger-RNA signature and other 
genomic models published by the SKCM consortium. 
The design of the MEL12 signature likely contributes to 
its prognostic superiority, as the individual microRNAs 
in the signature were selected for their correlation with 
length of melanoma-specific survival. This contrasts with 
Cam_121, which was identified using time to develop-
ment of distant metastasis, a clinical endpoint with a 
higher degree of subjectivity and measurement variation 
than MSS [6].

Conclusions
These data build on previous work demonstrating that 
the ability of miRNA expression profiling of either solid 
biopsy tissue or plasma can identify the presence of inva-
sive melanoma at a local or systemic level. Both MEL38 
and MEL12 were first identified as circulating biomark-
ers of disease status, and these data further strengthen 
the hypothesis that a patient’s circulating microRNA 
profile reflects critical events in melanoma development 
and progression. Validation of the methods using RNA 
sequencing techniques is likely to enable greater clinical 
translation of these methods, improving diagnostic accu-
racy and facilitating risk-based treatment strategies.
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