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Abstract
Over 700 syndromes associated with hearing loss (HL) have been identified. Labyrinthine aplasia, microtia, and 
microdontia (LAMM syndrome, OMIM: 610706) is a rare HL syndrome characterized by congenital sensorineural 
HL, labyrinthine aplasia, type I microtia and microdontia, which is caused by biallelic variants in the FGF3 gene. 
Using Whole-exome sequencing (WES), we identified a novel missense FGF3 variant (c.137G > C, p. Arg46Pro 
(NM_005247.4) in three unrelated Uyghur ethnic families. This variant is classified as a variant of uncertain 
significance according to ACMG guidelines, with the applied criteria of PM3, PM2_Supporting, PP3 and PP4. 
Patients from the three families revealed variable clinical features. We found a novel phenotype, sparse hair, in one 
of the proband. Our findings expanded the variant and phenotype spectrum of LAMM syndrome and provided 
new insights to the diagnose and pathogenesis investigation of the disease.
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Introduction
Hearing loss (HL) is one of the most prevalent sensory 
disorders that affects 1 to 2 per 1000 children at birth or 
during childhood [1]. About 60% of congenital HL are 
caused by genetic factors, 30% are acquired and 10% are 
idiopathic [2]. Syndromic HL refers to hearing impair-
ment related to abnormalities that affect other organs/
systems [3]. Up to now, over 700 syndromes associated 
with HL have been identified. Nearly 20% of congenital 
HL is syndromic [3, 4]. HL can be classified as conduc-
tive HL, which is related to abnormalities in the external 
or middle ear and sensorineural HL, which is caused by 
defects in the inner ear, auditory nerve or auditory cere-
bral cortex [5]. Structure defects in the inner ear occurs 
in 15-20% of cases with severe or profound sensorineural 
HL [6].

Labyrinthine aplasia, microtia, and microdontia 
(LAMM syndrome, OMIM: 610706) is a rare HL syn-
drome characterized by congenital sensorineural HL, 
labyrinthine aplasia, type I microtia and microdontia. 
It was first described by Tekin et al. in 2007 [7]. Vari-
able features have been described in LAMM patients, 
including unilateral microtia and normal external ears, 
hypoplasia of alae nasi and involvement of the middle 
ear structures. Hearing phenotype of LAMM is typically 
congenital bilateral profound HL [8]. Although cognitive 
abilities are normal, patients often reported motor delay, 
due to absence of vestibular organs. Until now, the preva-
lence of LAMM syndrome (OMIM 610706, LAMM) has 
not been established [7].

LAMM is caused by FGF3 gene in an autosomal reces-
sive manner. FGF3 gene, also called Int2 or HBGF-3, 
contains three exons and encodes a 239-amino-acid-long 
protein, fibroblast growth factor 3 [9]. FGF3 protein 
regulates morphogenesis, embryonic development, cell 
growth, and tumor development through the RAS/MAP 
kinase pathway [10, 11]. Both loss of function (nonsense, 
frameshift and splicing) and missense variants affecting 
highly conserved residues in FGF3 were found to cause 
LAMM [12–14]. Furthermore, Fgf3-null mouse models 
showed variable dorsal otic malformations, suggesting 
that LAMM syndrome is caused by loss of FGF3 func-
tions [10].

In this study, we recruited three unrelated HL fami-
lies with LAMM syndrome phenotypes. High through-
put sequencing identified a novel missense FGF3 variant 
in all three families. Although sharing the same variant, 
patients from the three families showed variable clinical 
features.

Materials and methods
Cohort and clinical assessment
Three Uyghur ethnic families were recruited to the 
Hereditary Deafness Center at the Eye, Otolaryngology 

Hospital Affiliated with Fudan University, Shanghai, 
China. All individuals and family members underwent 
complete physical examination and were tested by pure-
tone audiometry. Hearing thresholds were measured at 
the following frequencies: 0.125, 0.25, 0.5, 1, 2, 4, 6, and 
8 kHz. Patients were examined to identify the inner ear 
defects by High-resolution magnetic resonance imaging 
(MRI) scans and High-Resolution CT. Fully informed 
written consents were provided by all family members. 
This study was approved by the ethics committee of the 
Institutional Review Board of the Eye, Ear, Nose and 
Throat Hospital affiliated with Fudan University (Shang-
hai, China).

Next-generation sequencing
Whole blood samples were collected, and genomic DNA 
was extracted using DNA Isolation Kit (Qia-Gen, Hilden, 
Germany). Probands were pre-screened for pathogenic 
variants in the GJB2 gene by Sanger sequencing, and no 
pathogenic variants were identified. All probands of the 
families underwent WES subsequently. A sequencing 
library was prepared using a DNA library preparation kit 
(New England Biolabs, lpswich, MA, catalogue#E6040). 
High-throughput sequencing was performed on Illu-
mina Hiseq 2000 (Illumina, Inc., San Diego, CA). To 
validate the variant, PCR and sequencing primers were 
designed by Primer3 online software (http://bioinfo.
ut.ee/primer3/). PCR and sequencing primers were 
designed using Primer3 online tools. Sanger sequencing 
was performed using Primer3 on a 3730XL (Applied Bio-
systems). The results of Sanger sequencing were aligned 
and viewed with the reference genome of the FGF3 gene 
using the Snapgene tool.

Variant prioritization and interpretation
Raw sequencing data was generated by the Illumina 
CASAVA v1.8 pipeline and aligned to the human refer-
ence genome (hg19) using the Burrows-Wheeler Aligner 
(BWA) program. Variant calling was done with GATK 
package v4.1.8.1. All variants were annotated using 
ANNOVAR software [15]. To identify the pathogenic 
variants, these variants were filtered out based on the fol-
lowing conditions: (1) low-coverage variants (depth < 10) 
(2) variants in the noncoding regions (3) synonymous 
variants in the coding region (4) variants with minor 
allele frequency (MAF) > 0.001 in several databases (1000 
genome project, gnomAD v2.1.1) (5) variants labelled as 
“benign” in the ClinVar database [15].

In silico analysis of novel candidate variants and gene
The deleterious effect of variants was predicted by Variant 
Effect Scoring Tool (VEST4), ‘The Rare Exome Variant 
Ensemble Learner’(REVEL), (https://sites.google.com/
site/revelgenomics/), Mendelian Clinically Applicable 
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Pathogenicity (M-CAP) (https://bejerano.stanford.edu/
mcap/), mutation tasting (https://www.mutationtaster.
org), Mutpred2 (http://mutpred.mutdb.org/index.html) 
and AlphaMissense (https://alphamissense.hegelab.org). 
The Ensembl Genome Browser (http://grch37.ensembl.
org/index.html) and OMIM (Online Mendelian Inheri-
tance in Man) (http://www.ncbi.nlm.nih.gov/Omim/) 
were used to analyze all genes and variants. Variant inter-
pretation was performed based on the American College 
of Medical Genetics and Genomics (ACMG) recom-
mendations [16, 17]. The ACMG is a report issued for 
clinically indicated exome and genome sequencing, a 
minimum list of conditions, genism and variants are sup-
posed to be evaluated and reported to the clinicians [17]. 
Protein sequences from various species were obtained 
through NCBI website (https://www.ncbi.nlm.nih.gov) 
and protein sequences from species were aligned using 
Clustal Omega in SnapGene. The 3D structure of the 
FGF3 protein was predicted by using the AlphFold Pro-
tein Structure Database (https://alphafold.ebi.ac.uk).

Results
Clinical presentation
Case 1
In family 1, the proband was a 6-year-old female with 
moderate to severe bilateral congenital HL, bilateral 
microtia and microdontia. She was the third of three 
children born to nonconsanguineous parents of Uyghur 
descent. Family history was negative and the pedigree 
of the family is shown in Fig.  1a. The proband showed 
bilateral microtia with a shortened upper half of auri-
cles and anteverted ears. Large skin tags at the superior 
medial aspect of the helical rim were noted bilaterally 
(Fig. 2a). A long face as well as widely spaced teeth with 
loss of tooth height and thin enamel (compatible with 
microdontia) were observed (Fig.  2b and c). Her hair 
was thin and sparse. Audiogram revealed a moderately 
severe U-shaped middle-frequency hearing loss (Fig. 2d). 
MRI scan shows stenosis of the internal auditory canal 
(Fig. S5a). The results of the MRI illustrate an arachnoid 

cyst in cisterna occipitalis magnus, bilateral maxillary 
sinusitis, enlarged bilateral retropharyngeal lymph nodes.

Case 2
In family 2, the proband was a 10-year-old Uyghur eth-
nic female with complete labyrinthine aplasia, microtia, 
and microdontia. She was the first of two children born 
to consanguineous parents. Her 7-year-old brother was 
healthy. Family history was negative and the parents 
were first cousins. The pedigree of the family is shown 
in Fig.  1b. Bilateral microtia with shortened upper half 
of auricles and anteverted ears were observed. Large 
skin tags at the superior medial aspect of the helical rim 
were noted bilaterally (Fig. 3a). A long face, hypoplastic 
alae nasi as well as widely spaced teeth with loss of tooth 
height and thin enamel (compatible with microdontia) 
were observed (Fig. 3b and c). The audiogram revealed a 
severe U-shaped middle-frequency hearing loss (Fig. 3d). 
HRCT show stenosis of the internal auditory canal. Bilat-
eral rudimentary otocysts are evident (Fig. S5b).

Case 3
In family 3, a 1-year-old male and a 12-year-old female 
were diagnosed with complete labyrinthine aplasia, 
microtia, and microdontia. Family history was nega-
tive and the parents were first cousins. The pedigree of 
the family is provided in Fig. 1c. The individual’s grand-
mothers are full sisters. The prominent tip of the low set, 
anteverted, dysplastic left and right ears were observed in 
the brother and his sister (Fig. 4a and c). Intraoral view 
shows small widely spaced teeth and abnormal primary 
canines and molars in the brother and his sister (Fig. 4b 
and d). Auditory brainstem response (ABR) tests of the 
proband and her affected brother showed no response 
at 97dBnHL intensity and the Auditory Steady-State 
Response (ASSR) tests for air conduction were shown in 
Fig. 4c. Axial HRCT obtained at the IAC level shows ste-
nosis of the internal auditory canal (Fig. 5).

Fig. 1  The pedigrees of the three families. (a). The pedigree of the family (1) (b). The pedigree of the family (2) (c). The pedigree of the family (3) (Arrows 
indicate the probands)
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Genetic diagnosis
WES was performed on the probands. A homozygous 
variant c.137G > C, p. Arg46Pro (NM_005247.4), was 
identified in exon 1 of the FGF3 gene in all probands of 
the three families. No pathogenic variants from other 
known HL genes were identified. This variant was 
validated by Sanger sequencing in all members of the 

family subsequently in three families. The c.137G > C 
variant leads to an amino acid substitution from argi-
nine to proline at codon 46 (p. Arg46Pro) in FGF3. 
Sanger sequencing showed that all four patients were 
homozygous for this variant, while their parents were 
all heterozygous (PM3) (Figs.  6, 7 and 8). This variant 
is predicted to be harmful by multiple prediction tools 

Fig. 2  Clinical photographs of the affected individual in family 1. Note the presence of LAMM syndrome in this patient. (a). The prominent tip of the 
low set, anterverted, dysplastic left and right ears. (b). Sparse hair and a long face were observed. (c). Intraoral views show small widely spaced teeth and 
abnormal primary canines and molars. (d). Pure-tone audiogram with 125 Hz to 8000 Hz for affected proband (AC means air conduction, BC means bone 
conduction)
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(VEST4 score = 0.815) (PP3) and prediction results are 
listed in Table  1. This variant was extremely rare (fre-
quency = 0.0000007) in the gnomAD v4.0.0 database 
(PM2_Supporting). Furthermore, all patients revealed 
phenotypes highly similar for LAMM syndrome (PP4). 
Therefore, this variant is classified as a variant of uncer-
tain significance according to ACMG guidelines, with the 
applied criteria of PM3, PM2_Supporting, PP3 and PP4 
[16, 17].

Bioinformatic analysis
The missense variant c.137G > C (p. Arg46Pro) sub-
stitutes Arginine with Proline, a nonpolar side chain 
amino acid, at codon 46 of the FGF3 protein. Arginine 
is highly conserved at codon 46 of FGF3 among differ-
ent species (Fig.  9), supporting a pathogenic role for its 
substitution. Molecular modelling of the mutant protein 
was performed using Missense3D with AlphFold model 
AF-P11487-F1. It was suggested that the missense vari-
ant replaced a buried charged residue (Arginine) with 
an uncharged residue (Proline), which might disrupt 
the H-bonds formed by the original residue. Besides, 

the original Arginine has a high pLDDT score (95.96) 
(Fig. 10).

Discussion
In this study, we recruited three unrelated families with 
LAMM syndrome. A novel missense variant in exon 1 
of the FGF3 gene was identified. Although LAMM syn-
drome is mainly characterized by HL with labyrinthine 
aplasia, microtia, and microdontia, other features were 
also revealed by recent studies, including large skin tags, 
defect of the middle ear, hypoplastic alae nasi, steno-
sis of the jugular foramen, and absence or narrowing of 
the eighth cranial nerve [18]. Although all three families 
shared the same variant, their clinical manifestations var-
ied. The proband from family 1 showed sparse hair which 
was not discovered in the other two families or previous 
LAMM cases. Patient in family 2 revealed hypoplastic 
alae nasi whereas the other two families were normal. 
These findings provide further evidence for the variable 
and diverse features of LAMM syndrome patients.

Until now, more than 24 pathogenic variants in the 
FGF3 gene have been associated with LAMM syndrome 

Fig. 3  Clinical photographs of the affected individual in family 2. Note the presence of LAMM syndrome in this patient. (a). The prominent tip of the low 
set, anterverted, dysplastic left and right ears. (b). A long face and hypoplastic alae nasi were observed. (c). Intraoral views show small widely spaced teeth 
and abnormal primary canines and molars. (d). Pure-tone audiogram with 125 Hz to 8000 Hz for affected proband (AC means air conduction, BC means 
bone conduction)
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Fig. 4  Clinical photographs of the affected individual in family 3. Note the presence of LAMM syndrome in the patients. (a, c). The prominent tip of the 
low set, anterverted, dysplastic left and right ears of the brother and sister respectively. (b, d). Intraoral views show small widely spaced teeth and abnor-
mal primary canines and molars in the brother and his sister. (f). Auditory Steady-State Response (ASSR) tests for air conduction with 125 Hz to 8000 Hz 
for affected probands
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in databases and literature. We summarized known FGF3 
variants in Table 2 [7, 12–14, 18–26]. The present study 
identified a novel missense variant (c.137G > C, p. Arg-
46Pro, NM_005247.4) in the FGF3 gene, results in the 
substitution of a highly conserved arginine by proline at 
amino acid 46 of the FGF3 protein. This variant lies at the 
start of the FGF domain (44 to 181aa) of FGF3 protein 
(Fig. 11), which may interrupt their interaction with the 
FGF ligands.

The inner ear is differentiated from the ectodermal 
placode adjacent to the developing hindbrain [27]. It 
is reported that fibroblast growth factors are involved 
in otic placode induction and vesicle formation in the 
amphibian embryo [10, 27]. FGF3 is normally expressed 
in a hindbrain from otic induction through the endo-
lymphatic duct outgrowth and also in the prospective 

neurosensory domain of the otic epithelium as morpho-
genesis initiates [27, 28]. Multiple phenotypic features 
have also been identified in the inner ear associated with 
various FGF3 pathogenic variants in the FGF3 knockout 
models [28]. FGF families, including FGF10 and FGF8 
have also been shown to be involved in an FGF signaling 
cascade that is required in otic induction and morpho-
genesis in early ear development [27, 29].

Until now, the genotype-phenotype correlation of 
LAMM syndrome has not been thoroughly understood. 
In our study, variable features were observed among 
patients with the same variant from different families. 
Our study also suggested that the specific facial features 
(outer ear and wide space teeth, long face) could be used 
as diagnostic marker for LAMM syndrome. Sequencing 
of the FGF3 gene is considered as a diagnostic measure 

Fig. 5  MR and CT images of 4 affected individuals with complete labyrinthine aplasia, microtia, and microdontia in 3 families. (a). Axial 3D FIESTA images 
at petrous bone levels show bilateral complete labyrinthine aplasia and the tracts for facial nerves (arrows) are present (family 1). (b). Axial CT images 
show bilateral rudimentary otocyst (arrows) (family 2). (c, d) Axial CT images show bilateral complete labyrinthine aplasia with hypoplastic petrous bone 
in 2 patients (family 3)
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which can reduce diagnostic costs when individuals pres-
ent such symptoms. The variant in this study might be a 
founder mutation for this isolated population for which 
consanguineous marriage is relatively common. In future 
study, the haplotype of the variant could be investigated 
by sequencing nearby SNPs. Furthermore, the frequency 
of this variant should be established in order to reduce 
future cases for the local population. However, there were 

no functional studies to investigate the function effects 
and the pathology of c.137G > C in FGF3. Instead, it is 
stated that additional studies are needed to show that the 
described variation is the responsible genetic pathology. 
Meanwhile, additional genotype-phenotype correlation 
studies will clarify the detailed phenotypic range caused 
by pathogenic variants in FGF3.

Fig. 6  The results of the Sanger sequencing of the proband and her parents and one brother in family 1. The homozygous and heterozygous mutations 
were found in the proband and other members of this family respectively. The arrows indicate the variant c.137G > C
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Fig. 7  The results of the Sanger sequencing of the proband and her parents and one brother in family 2. The homozygous and heterozygous mutations 
were found in the proband and other members of this family respectively. The arrows indicate the variant c.137G > C
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Table 1  Pathogenicity prediction results from multiple engines 

Fig. 8  The results of the Sanger sequencing of the probands and parents in family 3. The homozygous and heterozygous mutations were found in the 
probands and other members of this family respectively. The arrows indicate the variant c.137G > C
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Fig. 10  3D protein structure prediction using AlphFold Protein Structure Database. (a) 3D protein structure prediction of Arginine in FGF3. (b). 3D protein 
structure prediction of Proline in FGF3

 

Fig. 9  Arginine at position 46 of FGF3 is conserved in a variety of organisms from fish to frogs to humans. Protein data were collected at the National 
Center for Biotechnology Information Web site. Protein sequences were aligned using Clustal Omega in SnapGene
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Table 2  Mutations found in FGF3 gene in the literature and databases 
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Conclusions
In summary, the present study identified a novel mis-
sense variant in the FGF3 gene associated with LAMM 
syndrome in three unrelated Uyghur ethnic families. 
Novel clinical features were found in one proband from 
family 1. These findings expanded the variant and phe-
notype spectrum of LAMM syndrome and provided new 
insights to the diagnose and pathogenesis investigation of 
the disease.
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