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Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these 
molecules are impacted by changes in their expression levels. We performed next-generation sequencing and 
examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated 
cell sorting of severe COVID−19 patients and healthy control donors. In addition to examining the behavior 
of piRNA in the blood cells of severe SARS-CoV−2 infected patients, our aim was to present a distinct piRNA 
differential expression portrait for each separate cell type. We observed that depending on the type of cell, 
different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) 
have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from 
patients with severe COVID−19, we observed 3 significantly elevated piRNAs - piR−33,123, piR−34,765, piR−43,768 
and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were 
presented with a larger amount of statistically significant piRNA, 5 upregulated (piR−49039 piR−31623, piR−37213, 
piR−44721, piR−44720) and 35 downregulated. It has been previously shown that piR−31,623 has been associated 
with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we 
presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity 
or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
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Introduction
Non-coding RNAs (ncRNA) are functional RNA mol-
ecules that are not translated into a protein. There are 
various types of ncRNAs, including transfer RNAs 
(tRNAs), microRNAs, small interfering RNAs (siRNAs), 
PIWI-interacting RNAs (piRNAs), small nucleolar RNAs 
(snoRNAs), small nuclear RNAs (snRNAs), and long 
ncRNAs such as Xist and HOTAIR [1]. The functional 
roles of ncRNAs in gene expression regulation have 
been widely recognized. They are known to modulate 
chromatin structure, regulate the assembly and function 
of nuclear bodies, alter the stability and translation of 
mRNAs, and interfere with signaling pathways in various 
ways [2].

The study of ncRNAs is an active area of research, and 
there is ongoing debate about the functional significance 
of various ncRNAs [3].

piRNAs are a large subclass of small non-coding RNA 
molecules [4]. piRNA molecules primarily function in the 
epigenetic and post-transcriptional silencing of genetic 
elements in germ line cells by forming complexes with 
piwi-subfamily Argonaute proteins [5, 6]. They are cre-
ated from loci that function as transposon traps, pro-
viding a kind of RNA-based immune system against 
transposons, which are DNA sequences that can change 
their position within the genome [6–8].

In addition to their role in transposon silencing, piR-
NAs are also involved in the regulation of other genetic 
elements in germ line cells. They are primarily expressed 
in the testes and ovaries of mammals and are essential for 
germline development and fertility [9]. The dysregula-
tion of piRNAs has been associated with various diseases 
[10, 11], including cancer [12], where they can influence 
gene expression in somatic cells [13]. Nevertheless, the 
extent to which expression profiles differ in different cell 
types has been relatively poorly studied. In particular, the 
composition of piRNAs in different types of blood cells 
remains insufficiently researched in both normal and 
pathological conditions.

In a recent study of peripheral leukocytes of rheu-
matoid arthritis patients it has been shown that two 
immunoregulation piRNAs (piR-hsa−27620 and piR-
hsa−27124) were significantly elevated in patients with 
rheumatoid arthritis [14]. Latest advancements in 
sequencing and molecular technologies, along with in 
silico studies have improved the annotation and func-
tional validation of ncRNAs, enabling a better under-
standing of their roles in specific cell types and diseases 
[15]. However, the functional significance of ncRNAs, 
especially in poorly conserved species, remains a subject 
of ongoing research.

The interactions of piRNA with SARS-CoV−2 has been 
an active area of research in recent years. In a study pub-
lished in 2022 it was observed that piRNAs can interact 

with the SARS-CoV−2 genome, potentially blocking pro-
tein synthesis and controlling the virus’s replication [15]. 
Another study in 2023 confirmed that piRNAs can inter-
act with the Omicron variant of SARS-CoV−2, highlight-
ing the importance of piRNAs in controlling the virus’s 
spread [16]. Additionally, there has been research dem-
onstrating that exosomes and microvesicles released by 
murine neural stem cells contain piRNAs and can tar-
get SARS-CoV−2, suppressing its replication [17]. These 
studies collectively demonstrate the potential of piRNAs 
in controlling SARS-CoV−2 replication and highlight the 
importance of further research into the role of piRNAs in 
antiviral immunity.

Given the fact how significantly COVID−19 alters the 
biochemical and morphologic features of blood cells 
[18–20], and taking in account the promising research on 
interrelations between ncRNA immune regulatory fea-
tures and COVID−19 [21–23], it is necessary to state the 
importance of studying piRNA expression in blood cells 
of SARS-CoV−2 infected patients.

The aim of our research was to study the repertoire of 
piRNAs in different blood cells and changes in expression 
levels of these molecules during severe COVID−19.

Materials and methods
Patients and data collection
Eleven research participants in total were split up into 
two groups: six healthy donors and five COVID−19 
patients. The six healthy donors in our control group 
had a mean age of 51 ± 22. The five COVID−19 patients, 
with an average age of 67 ± 11, arrived at our institu-
tion between April 1, 2022, and August 23, 2022. Real-
time RT-PCR was used in the laboratory to confirm that 
all patients had SARS-CoV−2 infection. Two patients 
were transferred to the infectious disease unit and 
three patients were admitted to the intensive care unit. 
The following criteria were met by severe patients for 
ICU admission: body temperature ≥ 39  °C, respiration 
rate ≥ 30/min, and oxygen saturation (SpO2) ≤ 93%. These 
criteria are outlined in our national clinical recommen-
dations. Patient’s clinical data which is relevant to the 
study is presented in Table 1. (inflammatory markers and 
cell properties) The full clinical data is presented in the 
supplementary materials section.

Cell sorting and scanning electron microscopy
Sample staining for flow cytometry and subsequent sort-
ing was carried out according to a standardized tech-
nique [20].

Erythrocyte sorting was carried out by the following 
technique:

10 µl whole blood was added to 100 µl PBS, 2 µl anti 
cd235 (IM2212U) was added, 2 µl cd41 (A07781). 20 min 
incubated in dark, dissolved to 1 ml phosphate-buffered 
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saline (PBS), next, fluorescent sorting was carried out up 
to 5 million events on a MoFlo Astrios EQ flow cytome-
ter sorter (equipped with 405, 488, 645). (Fig. 1; Panel A).

Leukocyte sorting was carried out by 2 different meth-
ods as follows:

100 µl of heparinized peripheral blood was taken, 1 ml 
of VersaLyse lysing solution (Beckman Coulter, USA) was 
added to each tube, stirred and incubated for 10  min. 
10 µl of appropriate monoclonal antibodies were added: 
CD45-APC-AlexaFluor®750+ (A79392 Beckman Coulter, 
USA), CD16-PC7+(6607118 Beckman Coulter, USA), 
CD14-PC5.5+(A70204 Beckman Coulter, USA) was used 
to distinguish lymphocytes and monocytes.

The samples were stirred by vortex mixing and incu-
bated for 15–20  min at room temperature in the dark. 
Afterwards, 1 mL of phosphate buffer (PBS) was added 
and centrifuged for 5 min at 1500 rpm, the supernatant 
was removed and 1 mL of buffer solution was added to 
each tube. Resuspended precipitant was analyzed on a 
MoFlo Astrios EQ flow cytometer sorter (equipped with 
405, 488, 645). (Fig. 1; Panel C, D)

For isolating subpopulations of granulocytes - eosino-
phils, basophils and neutrophils the duraclone IM granu-
locyte antibody panel (B88651) (Beckman Coulter, USA) 
was used.

Sorting was performed through 70  μm diameter noz-
zles, 50 000−100 000 events for the leukocyte cell popula-
tion, into sterile 12 × 75 eppendorfs. (Fig. 1; panel G, H, I, 
J)

Cell sample purity for all cell populations was > 95% 
according to flow cytometry data: (Fig. 1; panel B, E, F, L, 
M, N)

A standardized protocol for sample preparation for 
scanning electron microscopy (SEM) was followed [24]. 
Further analysis was performed using a Zeiss Merlin 
scanning electron microscope in high resolution mode 
with EHT 0.400 kV and a magnification of 1.00 KX.

RNA separation, library preparation and next generation 
sequencing
RNA was isolated\extracted using ExtractRNA reagent 
(Evrogen) according to the provided protocol. After 
extraction, RNA was dissolved in 10 µl RNAse free water. 
The quality of leukocyte RNA was checked on a TapeS-
tation instrument (Agillent). Only samples with RIN > 5 
were used for the preparation of leukocyte libraries. From 
each sample we aquired 10 µL of RNA solution (18–43 
ng/µL). 15–90 ng of RNA was taken in each reaction. 
Reversion, preparation of short RNA libraries, and circu-
larization were performed using the Small RNA Library 
Prep Kit (BGI, 1000006383) according to the manufac-
turer’s recommendations. Libraries were purified by 
electrophoresis in a polyacrylamide 6% gel, cutting out 
the target band corresponding to the length of the target 
fragment 18−50b (library length 105−140b). Sequencing 
was performed on a DNBSEQ-G400 (BGI) instrument 
using the DNBSEQ-G400RS High-throughput Sequenc-
ing Set (Small RNA FCL SE50*) (BGI, 1000016998). After 
sequencing, the amount of information obtained from 
each sample was 400−1200 MB.

Bioinformatics and statistical analysis
Bioinformatics analysis was performed in miRMaster 
2 version 2.0.0 [25], a comprehensive analysis frame-
work for small RNA-seq data. Current version of miR-
master used Ensembl [26], RNACentral piRNA [27], 
NCBI RefSeq [28], ENA [29], GeneCards [30], PirBase 
[31] databases for analyzing RNAseq FASTQ data. Sta-
tistical analysis was performed in RStudio (version 
2023.09.1 + 494.pro2) [32]. Reads per million (RPM) 
was used as a normalized value of expression. Statistical 
analysis for the results was executed by applying the Wil-
coxon–Mann–Whitney test. A p-value < 0.05 was con-
sidered statistically significant. For RNAseq volcano plot 
the p-value was log transformed to log10 (1.31) for data 
presentation. Heatmap raw expression data was prelimi-
narily log transformed. Data visualization, images, and 
charts were made with RStudio ggplot2 [33] and tidy-
verse [34] open-source collection of packages. All raw 
data used for statistical analysis and visualization is pre-
sented in the supplementary materials.

Results
piRNA expression in sorted blood cells of healthy donors 
and severe COVID−19 patients
In order to compare piRNA expression in blood cells we 
sorted them by distinguishing the following cell types: 
erythrocytes (n = 5), monocytes (n = 5), lymphocytes 
(n = 4), eosinophils (n = 2), basophils (n = 2), neutrophils 
(n = 6). The cell sorting procedure is described in mate-
rials and methods. For accuracy, we checked the qual-
ity of sorting with SEM. As can be seen in the presented 

Table 1  Severe COVID−19 patients clinical data
Patient 
1

Pa-
tient 
2

Pa-
tient 
3

Pa-
tient 
4

Pa-
tient 
5

IL−6 (pg/ml) 61,8 204,6 62,54 399 2 398
CRP (C-reactive protein) mg/L 106,7 45,1 105,7 58,9 10,2
Red blood cells (RBC)10^12/L 3,18 4,29 4,69 3,72 3,77
Lymphocytes (LYMPH)10^9/L 2,73 0,72 1,03 0,71 0,65
Monocytes (MONO)10^9/L 1,73 0,19 0,5 0,45 0,11
Neutrophils (NEUT)10^9/L 9,61 7,77 11,16 1,04 3,16
Eosinophils (EOS)10^9/L 0,33 0,19 0 0 0,03
Basophils (BASO)10^9/L 0,03 0,01 0,01 0,01 0,01
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Fig. 1 (See legend on next page.)
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images (Fig. 2 panels B, C) morphological features of cells 
correspond with sorted cell types [19, 20]. We then iso-
lated RNA from sorted cells, prepared small RNA librar-
ies, performed NGS of small RNA and subjected the raw 
RNAseq data to bioinformatic analysis in miRMaster 2, 
details are described in materials and methods. All anno-
tated piRNA data is presented in the supplementary 
materials. We compared the major RNAs overexpressed 
in different blood cells of healthy control donors. The 
results are presented in Fig. 2 panel B, C (piechart). Addi-
tionally, log transformed raw expression data is presented 
in the heatmap (Fig. 2 panel A), where 5 (red) indicates 
maximum expression values, and < 1 (green) minimum. 
4 of the most abundant piRNA were expressed rela-
tively equally in all cell types, they included piR−49,145, 
piR−49,144, piR−49,143 and piR−33,151. We performed 
an identical analysis on the sorted blood cells of severe 
COVID−19 patients (Fig. 2), where we observed that the 
most abundant piRNA does not significantly differ from 
the expression in control cells.

piRNA differential expression in blood cells of patients 
with COVID−19
Next, we analyzed the piRNA differential expression in 
healthy donors and patients with severe COVID−19 in 
three distinguished sorted cell types erythrocytes (n = 5), 
monocytes (n = 5) and lymphocytes (n = 4), the results of 
the comparison are presented as a volcano plot (Fig.  3) 
where positive increasing log2 fold change corresponds 
with gene downregulation, and negative values corre-
spond with gene upregulation. All raw data used for anal-
ysis is presented in the supplementary materials section.

By reviewing piRNA expression in each group of sorted 
cells from severe COVID−19 patients we observed 3 
upregulated and 10 downregulated piRNAs in erythro-
cytes (Table 2). Monocytes were presented with a larger 
amount of statistically significant piRNA, 4 upregulated 
and 35 downregulated (Table  3). In lymphocytes, each 
piRNA was upregulated (Table 4).

Discussion
Many ncRNAs exhibit cell type, tissue, and cancer 
specificity, making them valuable for understanding the 
molecular basis of various diseases [35, 36].

By presenting piRNA expression profiles of sorted 
healthy control donor cells we attempted to portray 
cell type-specific piRNA, clusterization of which could 

compose a distinct and reliable piRNA expression por-
trait for healthy erythrocytes, lymphocytes, monocytes, 
eosinophils, basophils, neutrophils. For accuracy we 
additionally examined our sorted cells using SEM. The 
images that we observed confirmed that each sorted 
sample corresponded with the sought-for cell type. We 
observed mild cell shrinkage possibly due to the cell sort-
ing procedure. (Fig.  2 panels B, C). Such an approach 
would potentially allow us to distinguish piRNA pecu-
liarities in sorted blood cells.

To date it is known that a highly specific ncRNA - 
mir−451 is abundant in red blood cells [37]. Other spe-
cific miRNA include miR−223−3p which is linked to 
the inhibition of erythrocyte differentiation and is rec-
ognized to be crucial in promoting granulocytic dif-
ferentiation [38]. According to research, miR−223 is a 
potent granulopoiesis regulator that is mostly expressed 
in granulocytes [38]. However, we did not observe any 
similarly specific pattern of piRNA expression in either 
of the cell populations, therefore, it was not possible to 
state the prevalence of any distinct piRNA to a specific 
cell type. It is worth noting that despite the absence of a 
vivid piRNA expression pattern for erythrocytes, on our 
heatmap (Fig. 2 panel B) we demonstrate that the top 20 
most abundant erythrocyte piRNA show a mildly sig-
nificant distinguishable expression demarcation when 
compared to other cell types. This could occur mainly 
due to the lack of cell nucleus [39] and ribosomes in 
mature erythrocytes [40]. Thus, the origin of changes 
in piRNA expression in erythrocytes remains a matter 
of debate. The overall top 4 expressed piRNA in healthy 
control donors, as we demonstrate in our heatmap (Fig. 2 
panel A) and percentages pie-chart (Fig. 2 panel B), does 
not significantly differ depending on cell type. We per-
formed identical analysis for the blood cells of severe 
COVID−19 patients (Fig. 2 panel C) and did not observe 
any significant differences in piRNA expression. These 
piRNA include piR−49,144, piR−49,143, piR−33,151 and 
piR−49,145. Despite having a similar id, their sequence 
and length differ and each aforementioned piRNA is dis-
tinguished separately by RNACentral piRNA [27], ENA 
[29], GeneCards [30], PirBase [31].

Analyzing COVID−19 patients’ piRNA expression 
we observed several key features. The absolute majority 
of lymphocytic piRNA showed to be upregulated, while 
most erythrocytic and monocytic piRNA demonstrated 
a significant downregulation. (Fig.  3). In an attempt to 

(See figure on previous page.)
Fig. 1  Fluorescence activated cell sorting of erythrocytes, monocytes, lymphocytes, neutrophils, basophils and eosinophils from peripheral blood. Purity 
verification of sorted cell populations. Panel (A) Erythrocytes were gated by CD235. Panel (B) Cell sorting purity control (Erythrocytes 99.12%). Panel (C) 
Lymphocytes and monocytes before sorting. Gating CD45+, low SSC. Panel (D) Gate CD45+, low SSC. Separation gates of lymphocytes and monocytes 
before sorting. Panel (E) Lymphocytes cell purity control (98.21%). Panel (F) Monocytes cell purity control (97.76%). Panel (G) All leukocytes gating CD45+ 
(Gate A). Panel (H) Gating eosinophils + basophils (CD45 + CD294 + lin-). Panel (I) Distinguishing eosinophils and basophils. Panel (J) Gating neutrophils 
by CD45 + CD15 + NOT 294+. Panel K. CD294 + cell purity control (95.24%). Panel L. Eosinophils cell purity control. Panel M (99,37%). Basophils cell purity 
control (99,87%). Panel N. Neutrophils (CD15 + CD294-) cell purity control against gate CD294+ (99,52%)
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interpret these findings we encountered difficulties due 
to the lack of data on piRNA and its potential roles in 
immune mediated mechanisms and viral infections as 
demonstrated with lncRNA [41].

It is important to give an overview on the involvement 
of piRNA in various biological processes known to date. 
piRNAs play diverse roles in gene regulation. They are 
best known for their functions in transposon silencing, 
fertility, and regulation of germline mRNAs and lncRNAs 
[6–9, 42, 43]. Recent studies have also highlighted their 
involvement in various neuronal processes, including 
neuronal differentiation and the development of neu-
rodegenerative diseases. In the brain, piRNAs interact 
with a group of small RNAs and function as a complex 
to regulate cellular activities. Additionally, piRNAs have 
been implicated in the self-renewal of stem cells and are 
abundant in spermatogenic cells [6, 44–46]. The precise 
mechanisms of piRNA-mediated gene regulation in the 

brain and their associations with neurodegenerative dis-
eases are areas of active research.

We would like to emphasize on piRNAs role in trans-
poson silencing. This process occurs in the cytoplasm, 
where a PIWI-piRNA complex binds to a piRNA-com-
plementary transposon RNA and cleaves the RNA [6]. 
There are two main types of silencing: transcriptional 
silencing - mediated by nuclear PIWI proteins such as 
PIWI in Drosophila and MIWI2 PIWIL4 in mice and 
post-transcriptional silencing - mediated by cytoplasmic 
PIWI proteins such as Aubergine (PIWIL1) and MILI 
(a.k.a. PIWIL2) in mice [6, 47].

The piRNA pathway guards the germline genome 
against transposable elements (TEs) by targeting two 
steps required for all transposons. Regulation of chroma-
tin structure - In the nucleus, piRNAs are implicated in 
the regulation of chromatin structure, which can affect 
transcription of transposable elements [9].

Fig. 2  piRNA expression in cells of healthy donors and severe COVID−19 patients. Panel A. Log transformed raw expression data is presented in the heat-
map, where 5 (red) indicates maximum expression values, and < 1 (green) minimum. Erythrocytes (Er), Monocytes (Mon), Lymphocytes (Lym), Eosinophils 
(Eos), Basophils (Bas) Neutrophils (Neu). Panel B. Control donors. Percentages of different piRNA in each cell type are shown on the left. SEM images of 
sorted cells are displayed on the right. Scale bar is equal to 5 μm. Panel C. Severe COVID−19 patients. Percentages of different piRNA in each cell type are 
shown on the left. SEM images of sorted cells are displayed on the right. Scale bar is equal to 5 μm
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Direct targeting and destruction of RNAs - In the cyto-
plasm, the piRNA pathway directly targets and destroys 
RNAs of transposons that escaped transcriptional silenc-
ing [9, 48]. The piRNA pathway is essential for main-
taining genome integrity, as transposable elements can 
cause DNA breaks, illegitimate recombination, and other 
genomic damage [9]. Mutations in genes involved in the 
piRNA pathway, such as Rhino and Armi, can lead to the 
activation of transposons and female sterility [47].

To date there are several significant reports of viral 
impact on transposable element activity [49, 50]. It is 
explicitly stated in a study by Macchietto et al. that early 
up-regulated transposons are a component of the first 

wave response during virus infection and that trans-
poson up-regulation is a common phenomena dur-
ing virus infection in humans and mice [51]. According 
to Ivancevic et al. [52] immune cells show the highest 
enrichment of transposable element-derived enhanc-
ers. This allows us to propose that the expression of 
transposable elements could possibly correlate with the 
expression of certain piRNA, and elucidate our findings 
of the piRNA upregulation tendency in lymphocytes of 
COVID−19 patients. It has also been shown on a A549 
cell culture that SARS-CoV−2 induces a great number of 
differentially expressed transposable element loci, which 
additionally supports our assumptions [53].

Fig. 3  Differential expression of piRNA in erythrocytes, monocytes and lymphocytes of severe COVID−19 patients
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To better understand the nature of piRNA upregulation 
in lymphocytes during COVID−19 it is necessary to con-
sider some individual piRNAs: piR−35,462, piR−36,074, 
piR−36,038 have been found to be associated with eosin-
ophil count and total serum IgE in large, independent 
childhood asthma cohorts [54].

Other piRNAs expressed in lymphocytes are men-
tioned by different authors in papers on germ cells [55], 
oocytes, embryos [56], human neuroblastoma [57], dif-
ferentiation of human mesenchymal stromal cells [58], 
bladder cancer [59] and gastric cancer, where piR−31,355, 
another piRNA upregulated in COVID−19 patients’ lym-
phocytes was pointed out as a potential biomarker of gas-
tric cancer [60]. The function and role of aforementioned 
piRNAs remains a matter of debate, as the present piRNA 
dataset is not available for KEGG mapping or functional 
enrichment analysis [61].

When analyzing differential expression in COVID−19 
patients’ monocytes our attention was drawn by 1 of 4 
highly upregulated piRNAs’ - piR−31,623. In a research 
dedicated to studying exosomes derived from lung basal 
epithelial cells infected by respiratory syncytial virus 
(RSV), Chahar et al. presented a table of top 15 highly 
upregulated exosome-derived piRNA, where piR−31,626 
demonstrates an average read count of 48.19 in RSV exo-
somes, and 0.62 in mock exosomes [62]. Additionally, in 
our research, we observed downregulation of piR−36,169, 
whereas the same piRNA in RSV infected exosomes was 
highly upregulated [62]. Both RSV and SARS-CoV−2 can 
induce syncytia formation in infected cells, but the mech-
anisms and consequences of syncytia formation may dif-
fer between the two viruses [63]. In summary, RSV and 
SARS-CoV−2 have different genome sizes, polarities, 
protein encoding, and cellular receptors, however, both 
viruses can induce syncytia formation, but the mecha-
nisms and consequences of syncytia formation may differ 
between the two viruses. Furthermore, exosomes isolated 
from RSV-infected cells were able to trigger the release 

of chemokines from A549 alveolar basal epithelial cells 
and human monocytes, according to Chahar et al. This 
suggests that exosomes released during infection may 
change cellular responses, either activating or suppress-
ing the innate immune system [62]. Given the fact that 
both viruses cause syncytia formation, it is possible that 
piR−31,626 may be circumstantial evidence of syncytium 
remodeling.

In our study we attempted to portray distinguishable 
expression profiles for erythrocytes of healthy control 
donors and COVID−19 patients. Erythrocytes express 

Table 2  List of piRNAs significantly altering their expression in 
erythrocytes of severe COVID−19 patients
piRNA fold change p-value expression
piR−33,437 4,02 0,032 downregulated
piR−30,961 3,593 0,032 downregulated
piR−35,229 3,534 0,008 downregulated
piR−35,176 3,471 0,032 downregulated
piR−32,374 3,278 0,032 downregulated
piR−33,387 3,052 0,008 downregulated
piR−45,459 2,896 0,016 downregulated
piR−35,952 2,545 0,032 downregulated
piR−30,855 2,283 0,036 downregulated
piR−33,123 2,985 0,016 upregulated
piR−34,765 2,551 0,032 upregulated
piR−43,768 2,481 0,008 upregulated

Table 3  List of piRNAs significantly altering their expression in 
monocytes of severe COVID−19 patients
piRNA fold change p-value expression
piR−30,327 4,99 0,008 downregulated
piR−52,207 4,817 0,008 downregulated
piR−37,750 4,704 0,008 downregulated
piR−40,626 4,563 0,032 downregulated
piR−52,740 3,968 0,018 downregulated
piR−39,980 3,827 0,008 downregulated
piR−35,135 3,241 0,008 downregulated
piR−53,542 3,011 0,008 downregulated
piR−35,545 3 0,032 downregulated
piR−57,559 2,949 0,012 downregulated
piR−57,460 2,918 0,016 downregulated
piR−49,029 2,882 0,036 downregulated
piR−56,501 2,791 0,008 downregulated
piR−36,169 2,668 0,008 downregulated
piR−54,764 2,636 0,045 downregulated
piR−54,765 2,542 0,045 downregulated
piR−36,771 2,534 0,016 downregulated
piR−57,815 2,525 0,008 downregulated
piR−59,293 2,5 0,016 downregulated
piR−59,199 2,398 0,02 downregulated
piR−59,892 2,302 0,02 downregulated
piR−48,218 2,286 0,018 downregulated
piR−36,182 2,281 0,012 downregulated
piR−56,497 2,251 0,032 downregulated
piR−62,053 2,216 0,032 downregulated
piR−52,475 2,195 0,032 downregulated
piR−42,694 2,168 0,01 downregulated
piR−41,406 2,157 0,036 downregulated
piR−36,170 2,156 0,016 downregulated
piR−56,031 2,141 0,036 downregulated
piR−36,421 2,085 0,02 downregulated
piR−32,331 2,077 0,045 downregulated
piR−41,405 2,035 0,016 downregulated
piR−53,171 2,024 0,032 downregulated
piR−45,120 2,003 0,032 downregulated
piR−49,039 2,985 0,008 upregulated
piR−31,623 2,857 0,008 upregulated
piR−37,213 2,564 0,032 upregulated
piR−44,721 2,439 0,032 upregulated
piR−44,720 2,415 0,032 upregulated
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their genetic material and proteins during their develop-
ment in the bone marrow [64]. There is currently lim-
ited information available on how piRNAs are expressed 
in erythrocytes, especially given the fact that they lack 
mitochondria, ribosomes, nuclei, and other organelles 
[40]. Supposedly, the piRNA content in red blood cells 
that we observed remains from proerythroblast stages.

Conclusion
Overall piRNA expression differs depending on cell 
type. Four of the most abundant piRNA were expressed 
relatively equally in all cell types. By reviewing piRNA 
expression in each group of sorted cells from severe 
COVID−19 patients we observed 3 upregulated and 10 
downregulated piRNAs in erythrocytes. In lymphocytes, 
each of 19 piRNA were upregulated. Monocytes were 
presented with a larger amount of statistically significant 
piRNA, 4 upregulated and 35 downregulated. piRNA was 
upregulated in lymphocytes of all COVID−19 patients. 
It has been previously shown that piR−31,623 has been 
associated with respiratory syncytial virus infection, and 
taking in account the major role of piRNA in transposon 
silencing, we presume that the differential expression 
patterns which we observed could be a signal of indirect 
antiviral activity or a specific antiviral cell state. Addi-
tionally, in lymphocytes, all 19 piRNAs were upregulated.
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