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Abstract
Background  The treatment of lung adenocarcinoma is difficult due to the limited therapeutic options. Cancer-
associated fibroblasts play an important role in the development of cancers. This study aimed to identify a promising 
molecular target associated with cancer-associated fibroblasts for the treatment of lung adenocarcinoma.

Methods  The Cancer Genome Atlas lung adenocarcinoma dataset was used to screen hub genes associated with 
cancer-associated fibroblasts via the EPIC algorithm and Weighted Gene Co-expression Network Analysis. Multiple 
databases were used together with our data to verify the differential expression and survival of COL11A1. Functional 
enrichment analysis and the single-cell TISCH database were used to elucidate the mechanisms underlying COL11A1 
expression. The correlation between COL11A1 and immune checkpoint genes in human cancers was also evaluated.

Results  Using the EPIC algorithm and Weighted Gene Co-expression Network Analysis, 13 hub genes associated 
with cancer-associated fibroblasts in lung adenocarcinoma were screened. Using the GEPIA database, Kaplan-Meier 
Plotter database, GSE72094, GSE75037, GSE32863, and our immunohistochemistry experiment data, we confirmed 
that COL11A1 overexpresses in lung adenocarcinoma and that high expression of COL11A1 is associated with a poor 
prognosis. COL11A1 has a genetic alteration frequency of 22% in patients with lung adenocarcinoma. COL11A1 
is involved in the extracellular matrix activities of lung adenocarcinoma. Using the TISCH database, we found that 
COL11A1 is mainly expressed by cancer-associated fibroblasts in the tumor microenvironment rather than by lung 
adenocarcinoma cells. Finally, we found that COL11A1 is positively correlated with HAVCR2(TIM3), CD274 (PD-L1), 
CTLA4, and LAG3 in lung adenocarcinoma.

Conclusion  COL11A1 may be expressed and secreted by cancer-associated fibroblasts, and a high expression of 
COL11A1 may result in T cell exhaustion in the tumor microenvironment of lung adenocarcinoma. COL11A1 may 
serve as an attractive biomarker to provide new insights into cancer therapeutics.

Keywords  COL11A1, Lung adenocarcinoma, Immune checkpoint genes, WGCNA, Prognosis, Biomarker

Analysis of cancer-associated fibroblasts 
related genes identifies COL11A1 associated 
with lung adenocarcinoma prognosis
Haosheng Zheng1,2†, Jian Tan1,2†, Fei Qin1,2†, Yuzhen Zheng1,2, Xingping Yang1,2, Xianyu Qin1,2* and Hongying Liao1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-024-01863-1&domain=pdf&date_stamp=2024-4-19


Page 2 of 16Zheng et al. BMC Medical Genomics           (2024) 17:97 

Introduction
Lung cancer is one of the leading causes of death in both 
men and women worldwide [1]. Lung adenocarcinoma 
(LUAD) is the most common histological subtype of lung 
cancer [2]. The prognosis of LUAD has greatly improved 
owing to the development of various LUAD therapies, 
such as surgery, chemotherapy, radiotherapy, targeted 
therapy, and immunotherapy [3]. However, many patients 
with LUAD are diagnosed in the advanced stages. Hence, 
the 5-year overall survival rate is low [4]. Therefore, there 
is an urgent need to identify effective biomarkers for the 
prevention and treatment of LUAD.

The development of tumors is affected not only by 
cancer cells but also by the tumor microenvironment 
(TME) [5]. TME refers to the tumor ecosystem within 
the human body consisting of immune cells, extracellular 
matrix, blood vessels, and other cells, such as fibroblasts. 
Tumor cells constantly interact within the microenviron-
ment, both positively and negatively. Within the TME, 
the tumor stroma critically impacts the tumor’s invasive-
ness by regulating extracellular matrix depositions and 
cancer cell metabolism [6]. In recent years, cancer-asso-
ciated fibroblasts (CAFs) and tumor stromal cells have 
received extensive attention. Some studies have indi-
cated that CAFs are one of the most abundant stromal 
cell components in the TME and play an important role 
in tumor invasion, angiogenesis, and extracellular matrix 
remodeling by promoting cell-cell interactions and secre-
tion of pro-invasive factors [7–9]. As such, CAFs are 
important for the discovery of therapeutic biomarkers for 
LUAD.

In this study, we used the immune infiltration score 
EPIC algorithm (http://epic.gfellerlab.org) [10] and 

Weighted Gene Co-expression Network Analysis 
(WGCNA) [11] methods to screen hub genes associated 
with CAFs in The Cancer Genome Atlas (TCGA) LUAD 
dataset. Hub genes were further validated using relevant 
datasets, and COL11A1 was identified as a potential bio-
marker for the prognosis and treatment of LUAD.

Materials and methods
Data collection and processing
Clinical information and RNA sequencing data were 
downloaded from The TCGA (https://portal.gdc.cancer.
gov/) and Gene Expression Omnibus (GEO) databases 
(https://www.ncbi.nlm.nih.gov/geo/). The inclusion cri-
teria were as follows: (a) samples diagnosed with LUAD; 
(b) number of samples more than 100; (c) cancer samples 
with clinical information including sample serial number, 
survival time, and survival status; (d) if the dataset lacked 
clinical data, the data is included unless the dataset con-
tained paired samples (tumor vs. normal). The exclusion 
criteria were as follows: (a) lung cancer samples without 
adenocarcinoma, (b) cancer samples without essential 
clinical information, and (c) samples with no expres-
sion value for over half of the genes. The basic informa-
tion of the included datasets is presented in Table 1. The 
“biobase” package was used to normalize the data. The 
probes were labeled with gene symbols according to the 
annotation information on the platform. The average 
value was calculated when multiple probes corresponded 
to one gene. When one probe corresponded to multiple 
genes, the probe was eliminated. Then, a gene expression 
matrix was obtained.

Differentially expressed genes (DEGs) and immune 
infiltration analysis
The “Limma” package in R was used to screen DEGs 
between cancer and normal tissues in the TCGA LUAD 
dataset (|log2FC|> 1, FDR < 0.05). The " ggplot2” pack-
age in R was used to draw a volcano plot and heatmap 
(including the top 50 upregulated and top 50 downregu-
lated genes) of DEGs. Next, we scored each sample in the 
TCGA LUAD dataset for immune infiltration using the 
EPIC algorithm (http://epic.gfellerlab.org). Subsequently, 
a variance analysis of immune infiltration scores between 
the tumor and normal groups was performed.

Weighted gene co-expression network construction
The R package WGCNA was used to identify CAF-
related modules and hub genes among DEGs. First, the 
outlier samples were removed by the “good-samples-
gene” function in WGCNA. The adjacency matrix was 
transformed into a topological overlap matrix (TOM). 
Genes were divided into different modules accord-
ing to the TOM-based dissimilarity measure. We set 
the soft-thresholding power to 8 (scale-free R2 = 0.88, 

Table 1  The basic information of TCGA and GEO datasets in the 
study
Dataset Data 

type
Platform Sample type Clinical 

informationTumor Normal
TCGA mRNA Illumina 

HiSeq
516 58 yes

GSE75037 mRNA Illumina 
Human-
WG-6 v3.0 
expression 
beadchip

83 83 no

GSE72094 mRNA Rosetta/
Merck 
Human RSTA 
Custom Af-
fymetrix 2.0 
microarray

442 0 yes

GSE32863 mRNA Illumina 
Human-
WG-6 v3.0 
expression 
beadchip

58 58 no

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://epic.gfellerlab.org
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networkType=“unsigned”), cut-off to 0.25, deepSplit to 3, 
and the minimal module size to 30 to identify key mod-
ules. The module with the highest correlation with CAFs 
was selected for subsequent analyses.

Function enrichment and pathway analysis of the selected 
module
Next, we used " enrichGO " and " enrichKEGG " func-
tions of the " ClusterProfiler " package to perform GO 
(Gene Ontology) and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) enrichment analysis of the “green-
yellow” module. Under the conditions of p.adj < 0.05, q 
value < 0.05, and count ≥ 2, biological processes, cellular 
components, and molecular functions in GO analysis 
and signaling pathways in KEGG analysis were identified. 
The results of the enrichment analysis are presented via a 
bubble chart.

Differential expression and survival analysis of the hub 
genes
Under the condition of Gene Significance(GS) > 0.8 and 
Module Membership(MM) > 0. 8, the hub genes were 
screened from the studied modules. Next, the GEPIA 
database [12] was used to perform a survival analysis 
of the hub genes. The Kaplan-Meier Plotter database 
(https://kmplot.com/analysis/) and GSE72094 data-
sets were used to validate the survival analysis of the 
hub genes. Furthermore, to confirm result reliability, 
sequencing data of normal lung tissues from the Geno-
type-Tissue Expression (GTEx) database (https://com-
monfund.nih.gov/GTEx) were used with the TCGA 
LUAD dataset. Next, the TCGA + GTEx, GSE75037, 
and GSE32863 datasets were selected to verify the dif-
ferential expressions of the hub genes. Additionally, we 
downloaded pan-cancer transcriptome data and clinical 
information from the University of California Santa Cruz 
(UCSC) Xena browser (https://xena.ucsc.edu/), which 
included 11,123 samples of 33 cancer types and normal 
tissues. We extracted the expression data of COL11A1 
for each sample. We used R software to calculate the 
expression differences between normal and tumor sam-
ples for each tumor using the Wilcoxon rank-sum test. To 
explore whether the mRNA levels of the hub genes exhib-
ited diagnostic efficiency for distinguishing LUAD from 
normal lung tissues, we conducted a receiver operating 
characteristic (ROC) curve analysis. The pROC package 
[13] was used to plot ROC curves and calculate the area 
under the curve (AUC) values in R.

COL11A1 genomic alteration and promoter methylation in 
LUAD
C-BioPortal [14] (http://cbioportal.org) is an open-access 
resource for exploring, visualizing, and analyzing multi-
dimensional cancer genome data. Currently, 225 studies 

have been conducted on cancer. c-BioPortal was used 
to analyze changes in COl11A1 gene mutations in the 
TCGA LUAD samples. UALCAN [15] (http://ualcan.
path.uab.edu/) is a comprehensive, user-friendly, and 
interactive web resource for analyzing cancer OMICS 
data. UALCAN was used to evaluate the promoter meth-
ylation of COL11A1.

Single‑cell analysis for the expression source of COL11A1
To explore which cells were the main source of COL11A1 
gene expression in LUAD, we performed a single-cell 
analysis using the TISCH database (http://tisch.comp-
genomics.org/home/) [16]. TISCH is an scRNA-seq data-
base focusing on the TME and provides detailed cell-type 
annotation at the single-cell level, enabling the explora-
tion of the TME across different cancer types, including 
LUAD.

Immunohistochemistry (IHC) validation of COL11A1
To evaluate the differences in COL11A1 expression at 
the protein level, paraffin specimens from 30 patients 
with LUAD were collected from the Pathology Depart-
ment of the Sixth Affiliated Hospital, Sun Yat-sen Univer-
sity. Each sample contained paired tumors and adjacent 
normal tissues. This study was approved by the Ethics 
Committee of the Sixth Affiliated Hospital, Sun Yat-
sen University. Written informed consent was obtained 
from all the patients. IHC was used to assess the expres-
sion of COL11A1 in LUAD and adjacent normal tissues. 
COL11A1 antibody (Proteintech 21841-1-AP-50UL) 
was used for IHC. Five event horizons were selected 
randomly and recorded. In this study, ImageJ software 
and GraphPad Prism 8 were used for quantitative and 
comparative analyses of the 30 paired samples. Besides, 
we used immunofluorescence technology to investi-
gate the relationship between COL11A1 and CAFs. We 
labeled CAFs with a-SMA antibody (Affinity Biosciences 
AF1032-50).

Correlation between COL11A1 and immune checkpoint 
(ICP) genes in human cancers
According to a previous study [17], we collected 60 ICP 
genes, including 36 immune stimulators and 24 immune 
inhibitors. Using SangerBox tools, we analyzed the cor-
relation between COL11A1 expression and ICP genes 
in pan-cancer. Meanwhile, we collected 30 LUAD sam-
ples from the sixth affiliated hospital of Sun Yat-sen 
University, and used RT-qPCR (TB Green® Premix Ex 
Taq(TaKaRa)) to detect the expression of COL11A1, 
PD-L1, and CTLA4. β-actin was used as an endogenous 
control. The primers used in this study were shown as 
followed:

https://kmplot.com/analysis/
https://commonfund.nih.gov/GTEx
https://commonfund.nih.gov/GTEx
https://xena.ucsc.edu/
http://cbioportal.org
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
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COL11A1: Forward Primer ​A​C​C​C​T​C​G​C​A​T​T​G​A​C​C​T​
T​C​C; Reverse Primer ​T​T​T​G​T​G​C​A​A​A​A​T​C​C​C​G​T​T​G​T​T​
T;

CD274(PD-L1): Forward Primer ​T​G​G​C​A​T​T​T​G​C​T​G​A​
A​C​G​C​A​T​T​T; Reverse Primer ​T​G​C​A​G​C​C​A​G​G​T​C​T​A​A​T​
T​G​T​T​T​T;

CTLA4: Forward Primer ​C​A​T​G​A​T​G​G​G​G​A​A​T​G​A​G​T​
T​G​A​C​C; Reverse Primer ​T​C​A​G​T​C​C​T​T​G​G​A​T​A​G​T​G​A​G​
G​T​T​C;

β-actin: Forward Primer ​T​G​G​C​A​C​C​C​A​G​C​A​C​A​A​T​G​A​
A; Reverse Primer ​C​T​A​A​G​T​C​A​T​A​G​T​C​C​G​C​C​T​A​G;

We set the median expression of COL11A1 as the 
cut-off point, and divided the 30 LUAD samples into 
two groups (COL11A1-high and COL11A1-low), and 
then calculated the differential expression of PD-L1 and 
CTLA4 between the two groups.

Statistical analysis
The R version (version 4.1.0) was used for the statistical 
analysis. Survival analysis was performed according to 
the Kaplan–Meier analysis and log-rank test. Compari-
sons of continuous variables were performed using the 
Student’s t-test or the Wilcoxon rank-sum test, as appro-
priate. Categorical clinicopathological variables were 
compared using the Chi-squared test or Fisher’s exact 
test. Correlation analysis was performed using Spear-
man’s correlation analysis. A p-value of less than 0.05 
was considered statistically significant (ns, p > = 0.05; *, 
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

Results
Screening the differentially expressed genes
The entire data analysis process is described in Fig.  1A. 
Through screening for differences between tumor 
and normal tissues in the TCGA LUAD dataset, there 
were 1412 upregulated and 1893 downregulated genes 
(|log2FC| >1, FDR < 0.05) (Fig. 1B); The heat map showed 
the top 50 upregulated and top 50 downregulated DEGs 
(Fig. 1C).

Immune infiltration analysis
To explore the TME infiltration of immune cells, we used 
the EPIC algorithm (http://epic.gfellerlab.org) to score 
the immune infiltration for each sample in the TCGA 
LUAD dataset. The results showed that there were more 
B cells, CAFs cells, NK cells, and other unclassified cells 
in LUAD, but fewer CD4 + T cells, CD8 + T cells, macro-
phages, and endothelial cells(Fig.  2A and H). This indi-
cates that CAFs in the TME may have an impact on the 
growth and development of LUAD.

WGCNA of DEGs
The “WGCNA” package in the R (version 4.1.0) was used 
to analyze the TCGA LUAD gene expression matrix. 

Sample clustering analysis was performed on the data 
to confirm accuracy. After the outlier samples (TCGA-
64-5775-01, TCGA-78-7155-01, TCGA-50-6591-01, 
and TCGA-91-6847-01) were excluded, a sample clus-
tering tree was constructed (Supplementary Fig.  1). To 
construct a scale-free network, the soft threshold power 
β was set to 8, independence was set to 0.88, and mean 
connectivity was close to 0 (Fig.  3A and B). DEGs with 
similar expression patterns were clustered into the same 
modules, and similar modules were further merged 
according to the cutting height < 0.25 (Fig.  3C). In this 
study, seven co-expression modules were identified in 
the TCGA-LUAD dataset. These were black, pink, pur-
ple, green, gray, green-yellow, and blue-green modules, 
respectively (the gray module is composed of genes that 
cannot be classified) (Fig.  3D, Supplementary Table 1). 
Next, we performed a correlation analysis between the 
eigenvector of the modules and the immune infiltration 
score of the samples. Subsequently, we drew the cor-
relation heat map according to the analysis results. We 
found that the green–yellow module had the strongest 
correlation with CAFs (r = 0.89, P = 2.8e-197) (Fig. 3E and 
F). Thus, we selected the green–yellow module to be the 
important module for further analyses.

Functional enrichment analyses of the green-yellow 
module
The “enrichGO” and “enrichKEGG” functions of the 
“clusterprofiler” package in Bioconductor were used 
to perform the GO and KEGG enrichment analysis of 
the green-yellow module genes. Under the condition of 
p.adj < 0.05, q value < 0.05 and count ≥ 2, the green-yellow 
module genes were involved in 256 biological processes 
(GO-BP), 23 cell components (GO-CC), 38 molecular 
functions (GO-MF), and 11 KEGG pathways. The bubble 
graph shows the top 10 messages for GO-BP, GO-CC, 
GO-MF, and KEGG (Fig.  4A and D). GO functional 
annotations showed that the green–yellow module genes 
were mainly involved in tissue development (BP), extra-
cellular matrix organization (BP), extracellular region 
(CC), extracellular matrix (CC), structural molecule 
activity (MF), and extracellular matrix structural con-
stituent (MF). The KEGG pathway analysis demonstrated 
that the green–yellow module genes were primarily 
associated with protein digestion and absorption, ECM-
receptor interaction, focal adhesion, etc. These enrich-
ment analysis results further suggested that the studied 
module genes were closely related to the TME extracel-
lular matrix.

Survival analysis of the hub genes and differential 
expression analysis of COL11A1
GS > 0.8 and MM > 0.8 were selected as screening condi-
tions, and 13 hub genes related to CAFs were obtained 

http://epic.gfellerlab.org
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from the green-yellow module. They were ADAM12, 
ADAMTS12, COL11A1, COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2, ITGA11, LRRC15, POSTN, THBS2, 
and THY1. The GEPIA database was used to analyze 
the prognosis of the 13 hub genes in LUAD. Taking the 
median value of each gene expression as the cutoff point, 
we found that patients with a high COL11A1 expression 
had a poor prognosis (HR = 1.5, P = 0.014) (Fig. 5A). Con-
versely, the other 12 hub genes showed no significant dif-
ference in the prognosis of LUAD (Supplementary Fig. 2 
We further verified the prognosis of COL11A1 in LUAD 
using the GSE72094 dataset and Kaplan Meier plotter 
database and found that patients with LUAD and a high 
expression of COL11A1 had a poor prognosis (p < 0.05) 

(Fig.  5B and C). These results suggested that patients 
with a high COL11A1 expression are associated with 
poor prognosis in LUAD.

Based on the TCGA + GTEx database and GSE32863 
and GSE75037 datasets, we further verified that the 
expression of COL11A1 in LUAD tissues was signifi-
cantly higher than that in normal lung tissues (p < 0.0001) 
(Fig.  5D and F). Furthermore, the ROC analysis results 
showed that the AUC values were 0.898 (TCGA + GTEx) 
(Fig.  5G), 0.885 (GSE75037) (Fig.  5H), and 0.864 
(GSE32863) (Fig.  5I), respectively. To further under-
stand the expression of COL11A1 in cancers, we also 
evaluated COL11A1 expression in TCGA pan-cancer 
dataset. The results showed that COL11A1 expression 

Fig. 1  Flow diagram of the data analyzing process and DEGs identification. Identification of differentially expressed genes (DEGs) based on the TCGA 
LUAD dataset (A). Volcano depicts the 3305 DEGs(|log2 FC| >1, FDR < 0.05)in the TCGA LUAD tissues versus normal lung samples (B). Heatmap depicts the 
top 50 upregulated and top 50 downregulated DEGs (C)
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Fig. 3  The weighted correlation network analysis of the differentially expressed genes (DEGs). Selection of the optimal soft-thresholding power for the 
scale-free network and mean connectivity (A, B). Dendrogram of 3305 DEGs depending on the dissimilarity measure(1-TOM). Each branch represents a 
gene, and each color represents a co-expression module (C). The number of module genes in the seven modules (D). Correlation analysis of the module 
eigengenes and immune infiltration score by the EPIC algorithm. Spearson’s correlation coefficient and the corresponding p-value are shown (E). Scatter 
plots between the gene significance for CAFs and module membership in the green-yellow module (F)

 

Fig. 2  The results from the variance analysis of immune infiltration scores by EPIC algorithm in LUAD B cells (A); CAFs (B); CD4_T cells (C); CD8_T cells (D); 
endothelial (E); macrophages (F); NK cells (G); and other cells (H) (**, p < 0.01; ***, p < 0.001)
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was significantly upregulated in 15 cancer types (BLCA, 
BRCA, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, 
LIHC, LUAD, LUSC, READ, STAD, THCA, and UCEC) 
(Fig.  6A). For paired tumors and normal tissues in the 
TCGA pan-cancer dataset, COL11A1 expression was 
significantly higher in BLCA, BRCA, CHOL, COAD, 
ESCA, HNSC, KIRC, LIHC, LUAD, LUSC, READ, STAD, 
THCA, and UCEC (Fig. 6B). These results suggested that 
COL11A1 may play an important role in the proliferation 
of cancers.

Genetic alteration and methylation analysis of COL11A1 in 
LUAD
The above results indicate that when COL11A1 is highly 
expressed in LUAD, the prognosis is poor. Genetic altera-
tions are one of the key factors affecting gene expression 

[18]. We used the TCGA LUAD dataset from the cBio-
Portal database to explore the genetic alterations of 
COL11A1. In total, 584 patients were included in this 
study. A total of 22% of the patients had gene mutations, 
including missense mutations, splice mutations, truncat-
ing mutations, amplification, and deep deletion (Fig. 7A 
and B). A total of 46 mutation sites were found in patients 
with these mutations (Fig. 7C). These findings indicated 
that COL11A1 has a relatively high frequency of genetic 
alterations in LUAD.

Epigenetic modifications, such as DNA promoter 
methylation regulate gene expression, and affect the 
growth and development of cancers [19]. Therefore, 
to explore the cause for a high expression of COL11A1 
in LUAD, we analyzed DNA promoter methylation. 
We used the UALCAN database to explore COL11A1 

Fig. 4  Functional enrichment analyses of the green-yellow module genes. GO functional enrichment analyses of green-yellow module genes (A–C). The 
KEGG functional enrichment analysis of green-yellow module genes (D)
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methylation in patients with TCGA LUAD. The results 
showed that the methylation level of COL11A1 in tumor 
tissues is significantly higher than that in normal tissues 
(p = 1.62e-12) (Supplementary Fig. 3).

Single-cell analysis of COL11A1
Single-cell analysis can provide a profound understand-
ing of the biological characteristics of cancers. Three 
LUAD datasets from the TISCH database were used for 
the analysis, namely, the EMTAB6149, GSE127465, and 

GSE131907 datasets. The UMAP algorithm was used for 
dimensionality reduction and visualization of the three 
datasets. In the EMTAB6149 dataset, we observed that 
COL11A1 was mainly expressed in CAFs (Fig. 8A and B). 
In the GSE127465 dataset, we observed that COL11A1 
was mainly expressed in CAFs and CD8 tex cells (Fig. 8C 
and D). In the GSE131907 dataset, we observed that 
COL11A1 was mainly expressed in plasma cells and 
CAFs (Fig.  8E and F). The quantitative expression of 
COL11A1 in the TME of the corresponding datasets is 

Fig. 5  Survival and differential expression analyses of COL11A1. Survival analysis of COL11A1 using the TCGA LUAD dataset (A), GSE72094 (B), and Kaplan 
Meier Plotter database (C). Differential expression validation of COL11A1 by using TCGA + GTEx, GSE75037, GSE32863 datasets (D–F). ROC curve analysis 
results using TCGA + GTEx, GSE75037, and GSE32863 datasets (G–I) (***, p < 0.001)
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represented in Fig.  8G. These results further confirmed 
the strong correlation between COL11A1 and CAFs. 
Collectively, these results suggested that COL11A1 in the 
TME is mainly produced by CAFs.

Immunohistochemical validation for the expression of 
COL11A1 in LUAD
Using the GeneCards database, subcellular location infor-
mation for the COL11A1 gene showed that it is mainly 
expressed in the endoplasmic reticulum and extracellular 
space (Fig. 9A). For validation at the experimental level, 
we analyzed COL11A1 protein expression by IHC stain-
ing. Thirty pairs of samples from 30 patients with LUAD 
in the Sixth Affiliated Hospital, Sun Yat-sen University 
were collected. Typical images of the three patients are 
represented in Fig.  9C and E. The results showed that 
COL11A1 was mainly enriched in the stromal tissues 
of LUAD, whereas weak staining or even non-staining 

was observed in normal tissues. Utilizing immunofluo-
rescence method, We found red fluorescence and green 
fluorescence basically overlap, which supported that 
COL11A1 was mainly expressed by fibroblasts (Red: 
COL11A1; Green: α-SMA) (Fig. 9B). By randomly select-
ing five fields of view from each sample and using Image 
J to determine the average optical density(AOD) value, 
we found that the expression of COL11A1 in LUAD tis-
sues was significantly higher than that in normal tissues 
(P < 0.001) (Fig.  9F). The above results indicated that 
COL11A1 is highly expressed in LUAD at the protein 
level, and associated with CAFs.

COL11A1 is related to ICP genes in human cancers
Immune surveillance affects the growth and develop-
ment of cancer cells, which evade immune responses by 
the ICP [20]. We investigated the association between 
COL11A1 expression and ICP genes in human cancers 

Fig. 6  Differential expression analysis of COL11A1 using the pan-cancer dataset. Differential COL11A1 expression between the TCGA cancers and normal 
tissues (A). COL11A1 expression in TCGA cancers and the adjacent paired normal tissues (B). ACC, adrenocortical carcinoma; BLCA, bladder urothelial 
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; 
COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; 
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma 
and paraganglioma; PRAD, prostate adenocarcinoma; READ rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine 
carcinosarcoma; UVM uveal melanoma. (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001)
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to explore the potential function of COL11A1 in immu-
notherapy. The results showed a correlation between 
COL11A1 and ICP genes in the 37 tumor types. The 
ICP genes are divided into two major categories: immu-
noinhibitors and immunostimulators. We found that 
the expression of COL11A1 is positively correlated with 
most immunoinhibitors and immunostimulators in thy-
roid carcinoma, rectal adenocarcinoma, colon adenocar-
cinoma, colon adenocarcinoma/rectum adenocarcinoma, 
bladder urothelial carcinoma, liver hepatocellular carci-
noma, pheochromocytoma and paraganglioma, uterine 
corpus endometrial carcinoma, lung squamous cell carci-
noma, ovarian serous cystadenocarcinoma, kidney chro-
mophobe, pan-kidney cohort, kidney renal papillary cell 
carcinoma, pancreatic adenocarcinoma, lung adenocar-
cinoma, stomach adenocarcinoma, stomach and esopha-
geal carcinoma, glioma, and brain low-grade glioma. The 
expression of COL11A1 is negatively correlated with 
most immunoinhibitors and immunostimulators in tes-
ticular germ cell tumors and uveal melanoma. Notably, 
COL11A1 positively correlated with HAVCR2(TIM3), 
CD274 (PD-L1), CTLA4, and LAG3 in LUAD(Fig. 10A). 
Then, we collected 30 LUAD samples and used RT-
qPCR to detect the expression of COL11A1, PD-L1, 
and CTLA4. We found that the expression of PD-1 and 
CTLA4 in the COL11A1-high group was much higher 
than that in the COL11A1-low group (Fig.  10B and C) 
(all, p < 0.05). These findings suggested that COL11A1 
may influence the regulation of TME in human cancers.

Discussion
Although LUAD has made good progress in diagnosis 
and treatment, it has a high degree of malignancy and a 
poor survival prognosis. Exploring the detailed mecha-
nisms of LUAD pathogenesis and identifying promising 
biomarkers for LUAD may help provide effective thera-
peutic targets and improve patient outcomes [21, 22]. 
Many studies have suggested that CAFs in the tumor 
microenvironment are important factors affecting tumor 
invasion and metastasis [23]. Therefore, we aimed to 
screen for biomarkers that affect the prognosis and diag-
nosis of LUAD from the perspective of CAFs in the TME. 
The results of our study comprehensively support the 
idea that COL11A1 derived from CAFs in the TME of 
LUAD may serve as a novel prognostic and therapeutic 
biomarker for LUAD.

The WGCNA and EPIC algorithms for immune infil-
tration were used to analyze the LUAD sample data in 
TCGA, and 13 hub genes with a strong correlation with 
CAFs were obtained. They were ADAM12, ADAMTS12, 
COL11A1, COL1A1, COL1A2, COL3A1, COL5A1, 
COL5A2, ITGA11, LRRC15, POSTN, THBS2, THY1. To 
clarify the prognosis of the 13 hub genes in LUAD, the 
GEPIA database was used for analysis, and it was found 
that the COL11A1 gene was highly expressed in LUAD 
and had a poor prognosis. We further verified the effect 
of COL11A1 on the prognosis of LUAD patients using 
the GSE72094 and Kaplan-Meier plotter databases 
and confirmed that the prognosis of LUAD patients 
with high expression of COL11A1 was poor. Feng et al. 

Fig. 7  COL11A1 genomic alterations and methylation were analyzed using the cBioPortal database and ULACAN database. OncoPrint of COL11A1 gene 
alterations in the TCGA LUAD cohort (different colors = different types of genetic alterations) (A). COL11A1 alteration types and the frequency of TCGA 
LUAD (B). Mutation sites of the COL11A1 gene in TCGA LUAD (C)
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demonstrated that COL11A1 is a potential effector gene 
that is positively regulated by MPZL1 and correlates 
with poor prognosis in LUAD patients [24]. Therefore, 
COL11A1 may be a potential prognostic biomarker in 
LUAD.

To date, 28 collagen types with different structures and 
biological functions [25]. Increasing evidence has empha-
sized the role of collagen in promoting cancer cell pro-
liferation and creating a tumor microenvironment for 
metastasis [26]. Among the 13 hub genes, 6 belonged 
to the collagen family. These are COL11A1, COL1A1, 
COL1A2, COL3A1, COL5A1, and COL5A2, respec-
tively. Although five genes(COL1A1, COL1A2, COL3A1, 
COL5A1, and COL5A2) did not show significance on the 
prognosis of LUAD patients in our study, previous stud-
ies have reported that these genes would affect tumor 
growth. Liu et al. discovered that COL1A1 promotes the 

metastasis of breast cancer and is a potential therapeu-
tic target [27]. Wang et al. demonstrated that COL1A2 
inhibition attenuated GBM proliferation by promoting 
cell cycle arrest [28]. Shen et al. revealed that COL3A1 
expression is an independent prognostic predictor in 
HNSCC patients [29]. Yang et al. found that COL5A1 
promotes the progression of gastric cancer by acting as 
a ceRNA of miR-137-3p to upregulate FSTL1 expression 
[30]. Ren et al. indicated that COL5A2 can promote cell 
proliferation and invasion in Prostate Cancer [31]. There-
fore, collagen plays an important role in tumorigenesis 
and development. Currently, most studies on collagen 
have focused on individual subtypes, and further explo-
ration is needed on the interactions among collagen 
subtypes.

COL11A1 is a component of XI collagen and is found 
mainly in the cartilage [32]. The lack of type XI collagen 

Fig. 8  The expression source of COL11A1 is shown by single-cell analysis. UMAP plot of EMTAB6149 (A, B). UMAP plot of GSE127465 (C, D). UMAP plot of 
GSE131907 (E, F). The expression level of COL11A1 in the different cell types of the EMTAB6149, GSE127465, and GSE131907 datasets (G)
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leads to abnormal thickening of cartilage tissues in car-
tilage [33, 34]. Importantly, emerging evidence indicates 
that COL11A1 is associated with cancer progression 
that can promote tumor growth, migration, invasion, 
metastasis, and chemotherapy resistance [35]. In addi-
tion, upregulation of COL11A1 is associated with cancer 
recurrence and poor survival and in some types of can-
cer, such as breast, colorectal, gastric, and so on [36–39]. 
Several reports have also validated that COL11A1 is an 
oncogene in the progression of non-small cell lung cancer 
[40–43]. However, there are few reports on the effect of 
COL11A1 on immune infiltration in the TME of LUAD.

In our study, we used TCGA + GTEx, GSE32863, and 
GSE75037 datasets to confirm that the expression of 

COL11A1 was significantly higher in tumor tissues than 
in normal tissues, which was verified by our own sam-
ples in IHC experiments. In addition, the correspond-
ing AUC values of the ROC curves were all greater than 
0.86, which revealed that COL11A1 exhibited excellent 
efficiency in distinguishing LUAD from adjacent normal 
tissues. Chong et al. reported that COL11A1 could be a 
biomarker for the diagnosis of non-small cell lung can-
cer [44]. We also found that COL11A1 is overexpressed 
in many cancer types. Therefore, high expression of 
COL11A1 alone is not yet used as a diagnostic specific 
biomarker of LUAD. In the future, further exploration 
is needed to investigate whether COL11A1 could be a 

Fig. 9  Immunohistochemical validation for the expression of COL11A1 in LUAD Subcellular localization for COL11A1 using the Genecard database (A). 
Typical representatives of the immunofluorescence images of COL11A1 in LUAD samples (B). Typical representatives of the immunohistochemical data 
of COL11A1 in 3 paired LUAD samples (C, D, F). The statistical results of differential expression of COL11A1 in 30 paired LUAD samples (F) (***, p < 0.001)
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pan-caner biomarker like the carcinoembryonic antigen 
(CEA) and carbohydrate antigen 19 − 9 (CA-19-9) [45].

To explore the reasons for the high expression of 
COL11A1 in LUAD, we used the c-BioPortal database to 
study genetic alterations in COL11A1. We found that the 

gene mutation rate of COL11A1 in LUAD was as high as 
22%. COL11A1 gene mutation may disrupt certain regu-
latory elements, leading to high expression of COL11A1 
in LUAD. Gene promoter methylation is another impor-
tant factor that affects gene expression. The ULCAN 

Fig. 10  Correlation between COL11A1 and immune checkpoint genes (A). PD-L1 and CTLA4 expression in the COL11A1-high group and the COL11A1-
low group was measured by qPCR (B, C) (*, p < 0.05; ***, p < 0.001)
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database was used to explore the promoter methylation 
of COL11A1 in LUAD. We found that the tumor tissues 
were hypermethylated compared to the adjacent normal 
tissues, which could not explain why the COL11A1 gene 
was highly expressed in LUAD. Therefore, it is suggested 
that promoter methylation is not the cause of the high 
expression of COL11A1 in LUAD. Of note, in addition to 
gene mutations and promoter methylation, the expres-
sion of COL11A1 at the transcriptional level may also be 
affected by many other factors, such as histone modifi-
cation and m6A RNA methylation modification [46–48], 
which have not been discussed in our study.

To explore the mechanism by which COL11A1 affects 
the proliferation and invasion of LUAD cells, we per-
formed GO and KEGG analyses. We found that the 
genes co-expressed with COL11A1 (green–yellow mod-
ule) were mainly enriched in signal pathways related to 
the extracellular matrix in the TME of LUAD. Lee et al. 
revealed that COL11A1 is enriched in β1 integrin sig-
naling, focal adhesion, and features of extracellular 
matrix-receptor interactions [49]. These results further 
suggested that COL11A1 plays an indispensable role in 
influencing tumor proliferation and invasion through the 
TME. In recent years, single-cell RNA sequencing tech-
nology has developed rapidly. This allows us to master 
information that is not available by bulk RNA sequenc-
ing [50]. In our study, using a single-cell analysis-related 
database, we found that COL11A1 was mainly expressed 
by CAFs in the TME rather than from LUAD cancer cells, 
which was also supported by our results of immunoflu-
orescence. Jia et al. revealed that COL11A1 is a highly 
specific biomarker of activated CAFs [51]. Therefore, we 
believe that CAFs in the TME may affect the growth and 
development of LUAD cells by COL11A1.

ICP genes affect immune cell infiltration in the TME 
and cancer immunotherapy [52]. We analyzed the rela-
tionship between COL11A1 and ICP gene expression. 
The results showed a correlation between the COL11A1 
and ICP genes in all 37 tumors. This indicates that 
COL11A1 affects immune function in the TME. Notably, 
COL11A1 positively correlated with HAVCR2(TIM3), 
CD274 (PD-L1), CTLA4, and LAG3 in LUAD. Using RT-
qPCR, we found that the expression of PD-1 and CTLA4 
in the COL11A1-high group was much higher than that 
in the COL11A1-low group. PD-L1, TIM3, LAG3, and 
CTLA4 are essential biomarkers of T cell exhaustion [53]. 
Therefore, a high expression of COL11A1 may result in T 
cell exhaustion in the TME of LUAD. T-cell exhaustion is 
defined as the impairment or even loss of T-cell activities 
in patients with common chronic infections or cancers. 
The discovery and clinical application of immune check-
point inhibitors targeting CTLA4 and PD-L1 have revo-
lutionized cancer therapy [54]. Therefore, the expression 

of COL11A1 in LUAD may affect the efficacy of cancer 
immunotherapy.

Our study has some limitations. First, we found a 
correlation between COL11A1 and T cell exhaustion, 
but our results were generated mainly through bioin-
formatic analysis. To date, there is still no research on 
how COL11A1 results in T cell exhaustion in the TME 
of LUAD. This aspect will be one of our future research 
directions. Second, the data was retrospective. In the 
future, our results should be further confirmed via pro-
spective studies. Third, we found that COL11A1 was 
overexpressed in LUAD at both the mRNA and protein 
levels. In the future, to increase the clinical application 
of COL11A1, we need to collect patients’ blood, pleural 
fluid, and sputum samples to further explore COL11A1 
expression.

Conclusion
In summary, COL11A1 is mainly expressed and secreted 
by CAFs. A high expression of COL11A1 may result in 
T cell exhaustion in the TME of lung adenocarcinoma. 
COL11A1 may serve as a novel prognostic biomarker 
and provide new insights into LUAD therapeutics, par-
ticularly cancer immunotherapy.
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