
Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84
https://doi.org/10.1186/s12920-018-0400-8

TECHNICAL ADVANCE Open Access

Privacy-preserving record linkage in large
databases using secure multiparty
computation
Peeter Laud1* and Alisa Pankova1,2

From iDASH Privacy and Security Workshop 2017
Orlando, FL, USA.14 October 2017

Abstract

Background: Practical applications for data analysis may require combining multiple databases belonging to
different owners, such as health centers. The analysis should be performed without violating privacy of neither the
centers themselves, nor the patients whose records these centers store. To avoid biased analysis results, it may be
important to remove duplicate records among the centers, so that each patient’s data would be taken into account
only once. This task is very closely related to privacy-preserving record linkage.

Methods: This paper presents a solution to privacy-preserving deduplication among records of several databases
using secure multiparty computation. It is build upon one of the fastest practical secure multiparty computation
platforms, called Sharemind.

Results: The tests on ca 10 million records of simulated databases with 1000 health centers of 10000 records each
show that the computation is feasible in practice. The expected running time of the experiment is ca. 30 min for
computing servers connected over 100 Mbit/s WAN, the expected error of the results is 2−40, and no errors have been
detected for the particular test set that we used for our benchmarks.

Conclusions: The solution is ready for practical use. It has well-defined security properties, implied by the properties
of Sharemind platform. The solution assumes that exact matching of records is required, and a possible future
research would be extending it to approximate matching.

Keywords: Secure multiparty computation, Privacy-preserving record linkage, Deduplication, Privacy

Background
In this paper, we present a solution to the first track
of iDASH 2017 competition [1], titled De-duplication
for Global Alliance for Genomics and Health (GA4GH).
The goal is to develop privacy-preserving record linkage
(PPRL) technique on top of existing European ENCCA
Unified Patient Identifier (EUPID) framework to facilitate
the deduplication task in GA4GH [2].

There is a large number of data providers, called health-
care centers. They all have lists of patients. They want
to know whether anyone else has the same patient in

*Correspondence: peeter@cyber.ee
1Cybernetica AS, Ülikooli 2, 51003 Tartu, Estonia
Full list of author information is available at the end of the article

the list. This knowledge would allow them to exclude
the duplicates from further data analysis, making it more
efficient and less biased. Since each center uses its own
local identities for its patients, they need to use so-called
quasi-identifiers such as patient name and his date of birth
to link the records, and this information may be sensi-
tive. The centers could potentially agree on some kind of
anonymization, replacing the quasi-identifiers with some
random numbers. However, this is in general not suf-
ficient, as e.g. seeing that some patient is present in
exactly the centers A, B, C could already potentially leak
more information about the patient. For example, if the
observer already knew the patient records of A, he would
in addition learn that these patients have also visited the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0400-8&domain=pdf
mailto: peeter@cyber.ee
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 34 of 55

centers B and C. Mechanisms stronger than anonymiza-
tion are needed to overcome this problem.

Technical details of the task
In the competition setting, the patient list of a health
center is presented as a table, the columns of which are
correspond to the patient’s sensitive data, such as “first
name”, “last name”, “date of birth”, “sex”, etc. Two records
are considered the same if a certain combination of their
attributes matches, e.g. concatenation of the name and the
date of birth. For simplicity, it is assumed that the records
are already pre-formatted, and possible typos should not
be taken into account (we will discuss exact and approx-
imate matching in the “Discussion” section). For each
record, the centers compute the required combination of
the attributes, and hash it. They then upload all hashes to
the ideal computing machine, implemented with the help
of Secure Multiparty Computation (SMC). The machine
tells to each center, which of its records are also present in
someone else’s dataset, but it does not tell to whom exactly
these records belong. The machine itself should be real-
ized by k ≥ 3 specially assigned servers, and no server
should learn the values of uploaded hashes, since hashing
is used only for shortness of representation and does not
provide privacy by itself.

The targeted size of the computation is ca. 1000 centers,
with ca. 10000 records each. The competition organiz-
ers have made available a test set with 1000 tables, each
containing around 10000 records.

There are certain details about the data input and out-
put, which make this task more specific:

• The data is not uploaded instantaneously by all
centers. It is uploaded over time, so the ideal
computing machine may have significant resources
left over, while waiting for the next inputs.

• The first uploader of each record does not get it
indicated as a duplicate, even if more copies of the
same record are uploaded later. The record is
indicated as a duplicate only to the next uploaders.

The system diagram is depicted in Fig. 1. There are n
healthcare centers, indexed in the order they provide data.
The data is uploaded to the servers in form of secret-
shared hashes of records (1). After SMC servers compute
the results on this data (2), they report to each center a list
of booleans marking the duplicates (3), i.e. the records that
have already occured in the centers with smaller indices.
The results are returned to the centers in a secret-shared
manner, so that no server will learn them, but the receiver
center is able to reconstruct his answer from shares. In
the end, each center knows which records it should dis-
card to avoid repetitions with the other centers, and the
remaining records may now be used for any other task,
e.g. data analysis using other SMC protocols.

There can be two ways in which the final outputs should
actually be delivered to the centers. These are different
tasks with different challenges and solution possibilities.
We will consider them both.

1. In our first solution, the results are sent out to the
centers only after all uploads have finished. It is fine
as far as all 1000 centers will agree to contribute their
data more or less simultaneously, so that the first
uploader will not have to wait for too long. We
provide a faster and a more secure algorithm for this
setting.

2. In our second solution, each upload of a bunch of
records by a center is immediately followed by a
response from the servers. This algorithm has to be
used in the case when some centers may need more
time to contribute their data, but the faster uploaders
already want to get the results. It is more difficult to
preserve privacy in this case.

Related work
There are numerous papers about PPRL, including (but
not limited to) solutions based on Bloom filters for string
approximate matching [3, 4], extensions of Bloom filters to
matching of numerical data [5], as well as provably secure
multiparty protocols [6]. Some practical implementations
of PPRL include [7], describing a protocol where the link-
ing is delegated to the patient himself, and [8], based on
matching seeded hashes, which describes in details which
preprocessing steps should be applied to the data to make
it better linkable. An extensive state-of-the art overview of
this topic in the beginning of 2017 has been given in [9].

Similarly to other privacy-preserving computation
tasks, the two main approaches to PPRL are Secure Multi-
party Computation (SMC) techniques and data perturba-
tion techniques. The SMC approach is in general less effi-
cient, but it provides clear security guarantees, while data
perturbation methods can be severely broken due to infor-
mal security definitions that they provide [10]. For exam-
ple, some cryptanalysis of Bloom filter based solutions
has been performed in [11, 12]. They show some inter-
esting attacks, including patient name frequency analysis.
The iDASH 2017 competition has been focused on SMC
methods.

SMC often uses the notion of three separate roles for
parties [13]. There are input parties that provide the com-
putation with data, which needs protection. There are
computation parties that execute the privacy-preserving
computation on provided data. The computation parties
should not learn anything new from the execution, besides
what is leaked through the design of the application.
Finally, there are result parties who learn the results of the
computation. These three sets of parties may intersect.
In the context of the competition task, the computation

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 35 of 55

server 1

server 3

patient attribute
hashes

SMC

booleans
marking duplicates

center 1

center 2

center 3

center n−2

center n−1

center n

(2) computation
of results

(3) secret−shared

(1) secret−shared

server 2

Fig. 1 System diagram. The setting to which the solutions proposed in this paper are applied

parties are specially assigned servers, whose number does
not depend on the total number of health centers partic-
ipating. The centers themselves are both input and result
parties, each of them receiving a different subset of the
outcomes.

In our solution, we assume three computation parties,
since this is the setting for which the fastest SMC proto-
cols are known, and mature computation platforms exist.
The solution makes use of the following assumptions,
allowed by the competition:

1. Honest majority: at most 1 of 3 servers can be
corrupted.

2. Honest-but-curious (passive) adversaries: the
corrupted server follows the protocol, but the
attacker may get access to all messages received by
this server.

As far as these assumptions are satisfied, the only things
that may be inferred by the servers from the computation
are the following. The first type of leakage is the “duplica-
tion pattern”: for each n ∈ N, how many records are there,
that occur in the lists of all data providers exactly n times?
In the context of our task, this leaks how many patients
have been registered in exactly n hospitals, but this num-
ber is not correlated with particular records or hospitals in
any way. The second type of leakage is: how many dupli-
cates have been reported to the health center? It does not
allow to correlate the duplicates of different centers in any
way, and it only leaks that some n patients of this center
have visited some other center. We note that, in our solu-
tions, either the first or the second type of leakage takes
place, but never both at once.

Some points for evaluating a PPRL algorithm have been
mentioned in [9]. According to their framework, our solu-
tion could be assessed as follows:

• Scalability: The network communication
complexity of the first algorithm is O(n), where n is
the total number of records that all the clients hold.
e.g. if there are m clients holding k records each, then
n = mk. The complexity of the second algorithm is
formally O(n2), but we keep the constant small by
using an elaborated filtering technique, which allow
to reduce the number of comparisons up to 10 times
compared to straightforward pairwise comparison,
while slightly sacrificing the answer precision. We
note that the running time of the second solution is
actually more affected by heavy local computation
than by network communication.

• Linkage quality: Our solution aims to achieve exact
matching, as it was required by the test dataset. The
loss in correctness is limited by 2−40 in our
application. It happens mainly due to the initial
application of a hash function to the inputs, which
was a competition’s requirement anyway, and also
due to dropping some bits in order to match data
types that Sharemind supports. In the second
solution, some more correctness is sacrificed to gain
better efficiency.

• Privacy: It is guaranteed that we leak no more than
the total number of patients that have been registered
in exactly n hospitals (the first solution), or the
number of duplicated records in one client’s data (the
second solution).

Methods
The Sharemind platform
Our SMC protocols are implemented on top of the
Sharemind® platform [14]. The platform provides a dis-
tributed virtual machine (VM) that must be installed at
each of the computing servers. The machine interprets

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 36 of 55

the description of a privacy-preserving application (in our
case, the deduplication), where the cryptographic details
are abstracted away. From the application developer’s
point of view, different pieces of data are merely labeled as
“public” or “private”. The private data will never be learned
by any of the servers, unless it is deliberately declassified
(i.e. opened to all servers) by the application. While the
public values are stored at each server in plain, the private
values are stored in a secret-shared manner, preventing a
single server from learning its value. Underneath, the vir-
tual machine executes cryptographic protocols to perform
operations on private secret-shared data, which in general
requires interaction between the servers. The underlying
cryptographic protocols have been proven to be compos-
able [15], meaning that the applications do not need to
undergo any additional security proofs. Only deliberate
declassification of values needs to be justified. This also
concerns the deduplication that we present in this paper.

The main protocol set of Sharemind [16], denoted
shared3p, is based on additive sharing among three par-
ties. The private representation of a value u ∈ R from a
finite ring R is denoted by �u�, and is defined as �u� =
(�u�1, �u�2, �u�3), where the share �u�i ∈ R is held by the
i-th server. The shares are random elements of R, with the
constraint that the sum up to u. Hence, if anyone man-
ages to get only one or two shares of u, he cannot infer any
information about u. In [16], the authors have presented
protocols for a number of basic arithmetic, relational
and logical operations, such as addition, multiplication,
comparisons, etc., transforming shares of the inputs into
shares of the output. The supported rings are Z2n and Z

n
2,

and several different rings may be in used simultaneously
in the same application. There are special protocols for
converting shares between different rings. This basic set
of operations has been extended in numerous follow-up
papers [17–22].

The protocols of shared3p are secure against one pas-
sively corrupted party. Our deduplication application is
built on top of them. In the rest of this section, we present
all algorithms that we used in our application. In the
loops, we use foreach and while to denote parallelizable
loops, whilst for loops are sequential. Parallelization is
important due to the latency of all non-linear operations
with private values, due to the need to exchange mes-
sages between computation servers. We denote vectors as
�x = 〈x1, . . . , xn〉.

The first solution: output all results once in the end
In out first solution, the results of computation are only
available at the end, after all clients (the health centers)
have uploaded the hashes of their records. The outline of
the process is the following. In the first phase, the SMC
servers are collecting input data from the clients, with-
out performing any deduplication detection on it. When

the uploads have ceased (e.g. the deadline or some other
trigger event has happened), the servers stop collecting
the data. They run the deduplication algorithm on all data
they managed to collect so far, and give to each client its
personal output. If a record is duplicated, then the client
that first uploaded it will not be notified that it is a dupli-
cate. All other clients that have uploaded the same record
will receive a notification about it.

Cryptographic building blocks
We fix two cryptographic functions: the hash function
H : {0, 1}∗ → {0, 1}η, and a block cipher E : {0, 1}η ×K →
{0, 1}η, where K is the set of possible keys for E. The
block size of E should be the same as the output length
of H, so that we could apply E directly to the output of
H. The challenge is that we will apply E to secret-shared
values, and hence the block cipher E has to be easily
computable under SMC. We have picked AES-128 as E,
and the privacy-preserving implementation of AES-128
is already available in Sharemind [19]. There exist newer,
possibly more efficient implementations of AES [23], as
well as proposals for SMC-optimized block ciphers [24],
which have not been implemented on Sharemind yet, and
could potentially speed the computation up.

In our solution, we have taken η = 128. We let H be the
composition of SHA-256 cryptographic hash function and
a universal one-way hash function family (UOWHF) [25].

Computation on the client side
The behaviour of a client is described in Algorithm 1.
At start-up, each client queries the Sharemind servers
for the random parameters of the UOWHF H, which the
servers generate in the beginning. Each client takes the

Algorithm 1: Client computation
Data: Patient records p1, . . . , pn
Result: Booleans b1, . . . , bn, where bi = 1 iff pi is a

duplicate
begin client(p1, . . . , pn

Receive parameters a, r from the servers.
η ← 128
foreach i = 0 to n − 1 do

Let si be concatenation of key attributes of pi.
x ← SHA256(si)
hi ← (a · x + r) mod 2η

Send hi to the servers.
end
foreach i = 0 to n − 1 do

Receive a boolean value bi from the servers.
If bi = 1, then the i-th record is a duplicate.

end
return 〈b1, . . . , bn〉

end

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 37 of 55

input records as soon as they become available, picks the
necessary attributes from each record, applies H to them,
and uploads the hashes to Sharemind servers in secret-
shared manner. The Sharemind API readily supports that.
At this point, no server learns the exact values of the
hashes, since they are all secret-shared.

In the end, when the servers have finished the compu-
tation, the client queries them for its personal result. The
servers respond with the shares of the output, which is a
vector of booleans of the same length as the number of
records from this client, indicating whether a record is a
duplicate one. The client reconstructs the result vector.
Again, the Sharemind API already has support for that.

Computation on the server side
We describe the work of the servers in phases.

Start-up. This short phase is given in Algorithm 2. The
servers privately generate the following random values:

• parameters of the hash function H;
• a key �K� for the block cipher E.

All these values are generated in such a way that they
remain secret-shared among the servers, and no server
actually learns them. Sharemind API supports such shared
randomness generation, and we denote the corresponding
functionality as random.

The servers initialize a public variable cnt ← 0. It will
be used for indexation of clients.

Algorithm 2: Start-up
begin serverStartup ()

�K� ← random(2128)
a ← declassify(random(2128))
r ← declassify(random(2128))
cnt ← 0
while more clients are connecting do

Send a, r to the client.
end

end

Upload During the upload phase, two different activity
threads are essentially taking place in parallel.

One thread is the actual acceptance of data from the
clients, described in Algorithm 3. The hashes of clients
are stored into an private array �v�, and the correspond-
ing client identities into a public array s under the same
indices. In principle, this algorithm could be invoked sev-
eral times for the same client, if it intends to split up the
upload of its data. Several clients may want to connect to
the servers at the same time, so we need to make use of
Sharemind’s database support to avoid race condition on cnt.

Algorithm 3: Uploading data to servers
begin serverReceiveUploads ()

while more data coming do
Let the client upload the hash �h� of a record
Let id be the identity of the client
�vcnt� ← �h�
scnt ← id
cnt ← cnt + 1

end
end

The other thread of activity is encrypting the elements
�vi�. For each i, the servers evaluate E on �vi� in a privacy-
preserving way, using the same key �K� for each encryp-
tion, and take the first 64 bits of the result, as described
in Algorithm 4. The only reason why we take only 64 of
128 bits is that the largest ring that Sharemind currently
supports is Z264 . There are no problems with taking only
64 bits, as long as there are no collisions. With the envi-
sioned amounts of data (around 107 = 223.5 records in
total), collisions are unlikely; the birthday paradox puts
their probability at around 2−64+2·23.5 = 2−17. We note
that the communication complexity also reduces with the
number of bits of the data types.

Algorithm 4: Computing encryptions of hashes
Data: Private values �v0�, . . . , �vcnt−1�
Result: Private values �c0�, . . . , �ccnt−1�, where ci is an

encryption of vi for all i ∈ {0, . . . , cnt − 1}
begin encrypt(�v0�, . . . , �vcnt−1�)

foreach i = 0 to cnt − 1 do
�ei� ← E(�K�, �vi�)
�ci� ← leftbits64(�ei�)

end
return 〈�c0�, . . . , �ccnt�〉

end

In our implementation, evaluation of E can take place
either immediately after the data upload, or it can be run
in a separate thread, waiting until more data comes to pro-
cess it all in parallel. In any case, the application of E is
done in parallelized manner, batching up the hashes that
are waiting for being processed so far.

Computation of results. When the upload has finished
and the ciphertext �ci� has been computed for each i ∈
{0, . . . , cnt − 1}, then the final results are computed as
in Algorithm 5. First of all, all computed ciphertexts are
privately shuffled, and then declassified. Since they are
encrypted with a block cipher whose key remains secret-

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 38 of 55

shared, it only reveals the “duplication pattern”, i.e. how
many values occur there exactly n times. The private shuf-
fle [26] in the shared3p protocol set is highly efficient: the
amount of communication is linear in the size of the shuf-
fled vector, and the number of communication rounds is
constant. It also allows to easily apply the shuffle inverse,
which is as efficient as the shuffle itself.

Algorithm 5: Finding the duplicates
Data: Private encryptions �c0�, . . . , �ccnt−1�
Data: Public client identities s0, . . . , scnt−1, where the

record ci belongs to si for all i ∈ {0, . . . , cnt − 1}.
begin serverMain(�c0�, . . . , �ccnt−1�, s0, . . . , scnt−1)

Generate a random permutation �σ � for cnt
elements.
��w� ← shuffle(�σ �, ��c�)
��t� ← shuffle(�σ �, 〈0, 1, . . . , cnt − 1〉)
�w ← declassify(��w�)
foreach i ∈ {0, . . . , cnt − 1}, such that wi unique in
�w do

ri ← false
end
foreach value ct occurring in �w several times do

{i1, . . . , ik} ← positions, where ct occurs in �w
〈ri1 , . . . , rik 〉 ← findmin(�ti1�, . . . , �tik �) //Alg. 6

end
��b� ← inverse_shuffle(�σ �, �r)
for i = 0 to cnt − 1 do

output �bi� to the data provider si
end

end

At this point, the servers could already mark the dupli-
cates with boolean values 1 and the remaining values with
0. After the obtained vector is privately shuffled back, the
servers can return the secret shared bits to the clients, so
that the i-th clients learns the bits indicating the duplicity
of its own records. The problem is that the servers need to
notify all clients except the first one, but because of shuf-
fling they do not know which entry belongs to the first
client. They cannot declassify the client indices �si� either
since it would partially undo the shuffling.

In order to determine which value belongs to the first
client, the servers run Algorithm 6. This algorithm is
applied to each set of shuffled entries that have identi-
cal values, to determine the minimum amongst them. The
minimum should be labeled false since it is not consid-
ered a duplicate, and all other elements should be labeled
true. The idea behind this recursive algorithm is the fol-
lowing. The inputs are split into pairs, and a comparison
performed within each pair. The element that is larger is
definitely not the minimum of the entire set, so we can

immediately write bi := true. The indices of all elements
that turned out to be smaller are stored into mi, and the
whole algorithm is now applied again to the elements
indexed by mi. The procedure is repeated until there are
is only one element left, which is the minimum, so the
algorithm returns false in one-element case.

Although Algorithm 6 works with private values, it
reveals the ordering between certain elements of �t.
Because of the random shuffle, the ordering of this vector
is completely random, so it does not disclose any informa-
tion. No server learns from the output more than it would
from a random permutation.

Algorithm 6: Finding the minimum of private values
with public ordering
Data: Private numbers �x1�, . . . , �xk�, all different
Result: Public booleans b1, . . . , bk where bi = false iff

xi is the smallest among x1, . . . , xk
begin findmin(�x1�, . . . , �xk�)

if k = 1 then return 〈false〉 � ←
k/2�
foreach i ∈ {1, . . . , �} do

if declassify(�xi� < �xi+��) then
mi ← i
bi+� ← true

else
mi ← i + �

bi ← true
end

end
if k is odd then

� ← � + 1
m� ← k

end
〈bm1 , . . . , bm�

〉 ← findmin(�xm1�, . . . , �xm�
�)

//Alg. 6 return 〈b1, . . . , bk〉
end

The second solution: output results immediately
Our second solution considers the case where the client is
immediately notified, which of its hashes of records have
already been uploaded by some previous client. This task
is more difficult than the previous one. We cannot simply
declassify the encrypted hashes when they arrive, since it
would leak which pairs of centers have intersecting sets of
records.

The second solution has the same components E and
H as the first solution, constructed in the same manner.
Again, the computation servers agree on the key �K� in
the beginning, as well as the parameters of H.

Computation on the client side
The clients perform pretty much in the same manner as
in the first solution, according to Algorithm 1. The only
technical difference is that the servers react to the upload

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 39 of 55

immediately, so the client most likely does not interrupt
the session with the servers, and stays connected until it
receives the result.

Computation on the server side
Assume that the servers already store T encrypted hashes
(zero or more), provided by the previous clients. These
T hashes have been stored as public values z1, . . . , zT ,
where zi is equal to the first 64 bits of E(K , vi). Duplicates
have already been removed among z1, . . . , zT . Assuming
that duplicates never end up among z1, . . . , zT , since �K�
remains private, z1, . . . , zT are computationally indistin-
guishable from T uniformly randomly distributed values,
so it is safe to make them public.

The 64-bit values z1, . . . , zT are kept in 2B buckets, num-
bered from 0 to 2B − 1. In our implementation, B = 16.
Each bucket is just a vector of values. Each zi is assigned
to the bucket Bj, where j is equal to the first 16 bits of zi.

Now suppose that a center has uploaded the hashes
�v1�, . . . , �vt�. The servers need to check whether these
hashes has occurred before. The computation starts by
encrypting each �vi�. Let �z′

1�, . . . , �z′
t� be the results of

encryption, computed by �z′
i� = leftbits64(E(�K�, �vi�)).

We cannot immediately declassify them since it would
leak which pairs of centers have intersecting sets of
records. Instead, we should use privacy-preserving com-
parison.

We do not want to simply invoke the private compar-
ison protocol for each zi and �z′

j�, because we consider
their number to be too large. Indeed, as we are aiming to
handle ca. 10 million records, this method would cause
us to compare each pair of records, leading to ca. 5 · 1013

invocations of the comparison protocol. An �-bit compar-
ison requires slightly more network communication than
a �-bit multiplication [16], with the latter requiring each
computation server to send and receive two �-bit values
[17]. If � = 64 and there are 5 · 1013 operations, then each
server has to send out and receive at least 6 · 1015 bits,
which on a 100 Mb/s network (specified in the conditions
of the competition task) would take almost two years.

We reduce the number of comparisons in the following
manner. Let �z′� be one of the private values �z′

1�, . . . , �z′
t�;

all t values are handled in parallel. The comparison of
�z′� with z1, . . . , zT is described in Algorithm 7. In this
algorithm, we let N be the maximum size of a bucket.
We denote the j-th element of the i-th bucket by Bi,j. We
assume that each bucket has exactly N elements, adding
special dummy elements if necessary.

The characteristic vector of an element x ∈ ZM is
a vector 〈b0, . . . , bM−1〉 ∈ Z

M
2 , where bx = 1 and all

other elements are equal to 0. The shared3p protocol set
has a simple and efficient protocol for computing char-
acteristic vectors, described in [27]. The protocol turns
a private value into a private characteristic vector. The

characteristic vector of leftbits16(�z′�) marks the index
of the bucket to which �z′� belongs, and the expres-
sion

⊕2B−1
i=0 �bi� · Bi,j returns exactly the j-th element of

that bucket, which we denote �yj�. This way, the val-
ues �y1�, . . . , �yN� are the privately represented content
of the bucket, into which z′ would belong. The private
comparison �z′� ?= �yj� is performed for all j, thus com-
paring �z′� against each element that belongs to the i-th
bucket. Finally, �b� = ∨n

j=1�cj� is the private OR of all
comparisons, which tells whether there had been at least
one match. The private bits �b1�, . . . , �bt� resulting from
applying Algorithm 7 to all �z′

1�, . . . , �z′
t� are returned to

the client.

Algorithm 7: Comparing �z′� against z1, . . . , zT
Data: Public numbers z1, . . . , zT , all different
Data: A private number �z′�
Result: Private boolean b where b = true iff z′ = zj for

some j ∈ {1, . . . , T}
begin compare(�z′�, z1, . . . , zT)

Let zi be partitioned to 2B buckets Bj by first B bits.
Compute the characteristic vector
〈�b0�, . . . , �b2B−1�〉 of leftbitsB(�z′�).
foreach j ∈ {1, . . . , N} do

�yj� ← ⊕2B−1
i=0 �bi� · Bi,j

�cj� ← �z′� ?= �yj�
end
return �b� = ∨n

j=1�cj�

end

After returning the answer to the client, the buckets
have to be updated with z′

1, . . . , z′
t . It is safe to declassify

�z′
i� if bi = 0, since in this case �z′

i� cannot be corre-
lated to any of zi and is indistinguishable from a random
value. However, we cannot immediately declassify the vec-
tor ��b�, because the positions of duplicated elements may
give away information about the input data. Since we are
allowed to leak the total number of duplicated entries per
client, we can do as described in Algorithm 8:

1. randomly shuffle 〈�b1�, . . . , �bt�〉 and 〈�z′
1�, . . . , �z′

t�〉,
using the same permutation;

2. declassify ��b�;
3. declassify those �z′

i�, where bi = 0, and add these z′
i

to the respective buckets.

In our implementation, �z′� is shared over Z
64
2 , hence

taking the first 16 bits of it is a local operation, resulting in
a value in Z

16
2 . The characteristic vector protocol in [27]

is easily adaptable to compute the characteristic vectors
of elements of ZB

2 , and its result is a vector over Z2 with

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 40 of 55

Algorithm 8: Updating z1, . . . , zT with z′
1, . . . , z′

t
Data: Buckets Bj of public numbers z1, . . . , zT , all

different
Data: Private numbers �z′

1�, . . . , �z′
t�

Data: Private duplicity booleans �b1�, . . . , �bt�
Result: Buckets Bj updated with those z′

i, where b′
i is

false
begin update(B1, . . . , BB, �z′

1�, . . . , �z′
t�)

Generate a random permutation �σ � for t elements
��b� ← shuffle(�σ �, ��b�)
��z′� ← shuffle(�σ �, ��z′�)
�b ← declassify(��b�)
foreach i ∈ {1, . . . , t} where bi = 0 do

�zi ← declassify(�zi�)
end
Add declassified zi to the respective buckets Bj.
return B1, . . . , BB

end

length 2B. The computation of the characteristic vector
requires communication of two elements of ZB

2 and one
element of Z2B

2 (in total, not per party).
The computation of �yj� in Algorithm 7 is again a local

operation. The computations of �cj� and their disjunction
are straightforward using the protocols available in the
shared3p set of Sharemind.

Speeding up local computations
In Alg. 7, the computation of �yj� is local. Nevertheless,
in practice it takes a major part of the entire effort of the
protocol, taking up most of the time in it. If we knew
something about the size of z′, we could compute

⊕
not

over all buckets, but only over a subset of them, covering
only the range into which z′ is guaranteed to fall, with a
negligible error.

A bucket is defined by the most significant bits of ele-
ments that it contains. If we take any two buckets, then
all elements in one of them will be strictly smaller than
all elements in the other one. If we sort �z′

1�, . . . , �z′
t� in

ascending order (Sharemind has efficient protocols for
sorting private values [28]), we know that the first ele-
ments more likely belong to the buckets with “smaller”
bits, and the last elements more likely belong to buck-
ets with “larger” bits. We can estimate these probabilities
more precisely.

As the key �K� is secret, and the hashes �v1�, . . . , �vt�
are all different, the values �z′

1�, . . . , �z′
t� can be treated

as mutually independent, uniformly random elements of
Z

64
2 . After sorting them, their likely ranges can be derived

from the order statistics as follows.
Let P be a discrete probability distribution over values

x1, x2, . . ., such that the probability mass of xi is pi. Let

X1, . . . , Xn be random variables sampled from P , and let
X′

1, . . . , X′
n be obtained after sorting X1, . . . , Xn in ascend-

ing order. We have Pr[X′
j ≤ xi] = ∑n

k=j
(n

k
)
Pk

i · (1−Pi)n−k ,
where Pi = Pr[Xi ≤ xi] = ∑i

k=1 pk . This quantity comes
from summing up probabilities of all possible combina-
tions, where at least j of n variables are smaller than xi. For
a fixed j, this expression is actually the cumulative density
function of a binomial distribution B(n, Pj).

In our case, P is the distribution over AES ciphertexts,
i.e pi = 2−128 for all i. The sorted ciphertexts z′

i are
instances of random variables X′

i . We want to find mi and
Mi, such that Pr[z′

i < mi] ≤ ε and Pr[z′
i > Mi] ≤ ε,

where ε is the desired error probability. Since we are deal-
ing with binomial distribution, we can use e.g. Höffding’s
inequality

Pr[z′
i ≤ mi] ≤ exp

(

−2
(n · Pi − mi)2

n

)

and Chernoff ’s inequality

Pr[z′
i ≤ mi] ≤ exp

(

− 1
2Pi

· (n · Pi − mi)2

n

)

,

where exp(x) = ex for Euler’s number e. We can solve
the equation ε = exp(−2 (n·Pi−mi)2

n) if Pi ≤ 1
4 , and ε =

exp(− 1
2Pi

(n·Pi−mi)2

n) if Pi ≥ 1
4 , getting the value for mi. The

value for Mi can be obtained analogously, since Pr[z′
i ≥

xi] = Pr[−z′
i ≤ −xi].

By default, we use ε = 2−40 as the probability of error.
As the total number of hashes is expected to be around
1000 · 10000 ≈ 223.5 and we have two bounds to try for
each hash, the probability of making a bounds check error
during the whole run is not more than 2 · 2−40+23.5 =
2−15.5, which we consider acceptable, and which is also
similar to errors due to the collisions in the first 64 bits of
AES output.

The usefulness of these bounds increases together with
t. If t = 100 (and ε = 2−40), then we gain little, as the
ranges [mi, Mi] still cover around half of the whole range.
If t = 10000, then the sorted values can be much more
tightly positioned — the ranges [mi, Mi] are less than 1/10
of the whole range.

Table 1 First solution

Encrypting the hashes 29 m

Shuffling the encrypted hashes 60 s

Find the first element in each duplicated set 30 s

Unshuffling the boolean results 12 s

Public sort, housekeeping 18 s

Total 32 m

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 41 of 55

Fig. 2 Second solution (w/o polynomials). Efficiency graph of the second solution without polynomial optimization. The number of CPU threads is
limited to 2

Alternative comparison
The communication costs of Algorithm 7 may be further
reduced, ultimately turning them into a constant (assum-
ing that B is constant), albeit with a further increase in the
costs of local computation.

Consider the bucket Bi with elements Bi,1, . . . , Bi,N . The
value z′ is an element Bi iff it is a root of the polynomial
Pi(x) = ∏N

j=1(x−Bi,j). The polynomial is considered over
the field F264 . The elements of this field are 64-bit strings
and their addition is bitwise exclusive or. Hence, an addi-
tive sharing over F264 is at the same time also sharing over
Z

64
2 and vice versa.
Let Pi,0, . . . , Pi,N be the coefficients of the polynomial

Pi. It does not make sense to compute Pi(�z′�) in a
straightforward way, because this would involve N −1 pri-
vate multiplications for each bucket. A better way is given
in Algorithm 9.

Algorithm 9: Comparing �z′� against z1, . . . , zT by
polynomial evaluation
Data: Public numbers z1, . . . , zT , all different
Data: A private number �z′�
Data: Coefficients Pi,0, . . . , Pi,N of the polynomial

Pi(x) = ∏N
j=1(x − Bi,j)

Result: Private boolean �b� where b = true iff z′ = zj
for some j ∈ {1, . . . , T}

begin compare_poly(�z′�, z1, . . . , zT)

Privately compute powers of �z′�: �z′2�, . . . , �z′N�
foreach i ∈ {0, . . . , 2B − 1} do

�di� ←
〈�1�, �z′�, �z′2�, . . . , �z′N�〉 · 〈Pi,0, . . . , Pi,N 〉
�c′

i� ← �di�
?= 0

end
Return �b� = ∨2B−1

i=0 �c′
i�

end

In Algorithm 9, �di� is computed as a scalar product
of the private vector of the powers of z′ with the public
vector of the coefficients of Pi. The powers of �z′� have
to be computed only once for all buckets. These powers
are computed with the help of the usual multiplication
protocol of Sharemind, but working over F264 . The local
operations in this protocol are multiplications in F264 ,
which are relatively more expensive than ordinary bit-
wise operations. In our implementation we use the NTL
library [29] for binary field operations. The computation
of all �di� involves many multiplications in this field, so
even though the computation does not require any com-
munication between the parties, it is quite heavy on the
local side.

As the computation of �z′2�, . . . , �z′N� is done over a
field, we can push its heaviest part to the precompu-
tation phase, leaving just a single private multiplication
to be done during runtime. The method is described in
([30], Algorithm 1). The precomputation consists of gen-
erating a random invertible element �r� ∈ F

∗
264 together

with its inverse �r−1� and computing �r2�, . . . , �rN�. Dur-
ing the runtime, one computes �z′� · �r−1� and declassifies
it. For an exponent k, the private value �z′k� is then found
as �z′k� = (

z′ · r−1)k ·�rk�, which can be computed locally,
without interaction.

Table 2 Second solution (w/o polynomials)

Housekeeping (avg per client) 0.28 s

Encrypting the hashes (avg per client) 6.3s

Shuffling the encrypted hashes (avg per client) 0.51 s

Detecting duplicates (min of 1000 clients) 20s

Detecting duplicates (max of 1000 clients) 46s

Total (1000 clients) 12 h 45 m

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 42 of 55

Fig. 3 Second solution (w/ polynomials). Efficiency graph of the second solution with polynomial optimization. The number of CPU threads is
limited to 2

In binary fields, including F264 , squaring of additively
shared values does not require communication between
the servers. This can be used to speed up precomputa-
tions. In ([30], Algorithm 4) it is shown how to reduce the
communication cost of computing �r2�, . . . , �rN� to that of
approximately

√
N multiplications.

The polynomial-based comparison method is also
amenable to the order statistic related speedup described
in the previous section. Both comparison methods have
been implemented in our second solution.

Results
We have evaluated our solution on the test data provided
by iDASH 2017 competition organizers. The data consists
of 1000 CSV formatted files, ca. 10000 rows each. The
evaluation has been performed on a local cluster of three
2 x Intel Xeon E5-2640 v3 2.6 GHz/8GT/20M servers,
where one server has also played the role of all clients. The
network bandwidth has been throttled to 100 Mb/s, and
latency changed to 40 ms. The number of computation
threads was limited to 2, as required by the competition
rules. The data upload times have not been measured
since they depend on the network connection between the
server and the centers, and are not related to the particular
SMC algorithms.

The number of incorrect answers in our benchmarks
was 0, and it turns out that the error 2−40 was fine for 1000
clients with 10000 records each.

First solution
The benchmarks of our first solution are given in Table 1.
The entire computation takes ca. 32 min, after which all
centers receive back the list of entries that are duplicates.
This is quite fast for privacy-preserving computation with
such large inputs, and in practice setting up the servers
and collecting the data may even take more time than the
computation itself.

Second solution
If the centers do not provide their data simultaneously,
and the time span between the first and the last contri-
bution is long, then the first uploaders may probably not
want to wait for the remaining ones. The 32 min of the
actual computation may become insignificant compared
to the time waiting for the other centers, so even a slower
algorithm may give advantage if it returns the results
immediately. The benchmarks of our second solution
(without polynomial optimization) are given in Fig. 2 and
summarized in Table 2, and they show that the waiting
time for each server is between 20 and 45 s. The later the
center joins, the longer will be his computation time. For
all 1000 centers altogether, the second solution would give
12 h 45 min compared to the 32 min of the first solu-
tion. However, if the time span between the first and the
last contributions exceeds at least 12 h 15 min, then the
second method already gives advantage also in the total
time.

The benchmarks of the second solution with polyno-
mial optimization are given in Fig. 3 (the limit on Y-
axis values is set to 140 to make it comparable to the
other graphs) and summarized in Table 3. We see that,
although the communication between parties decreases,
the computation is slower. The time cost per client vis-
ibly grows linearly with the number of clients, so the
total time is quadratic in the number of clients. This

Table 3 Second solution (w/ polynomials)

Housekeeping (avg per client) 0.28 s

Encrypting the hashes (avg per client) 5.8 s

Shuffling the encrypted hashes (avg per client) 0.53 s

Detecting duplicates (min of 1000 clients) 14 s

Detecting duplicates (max of 1000 clients) 666 s

Total (1000 clients) 88 h 8 m

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 43 of 55

Fig. 4 Second solution (w/o polynomials, no thread limit). Efficiency graph of the second solution without polynomial optimization. The number of
CPU threads is 32

means that the multiplication in F264 is too heavy, and
even limiting network connection to 100Mbps and adding
40ms latency did not make its complexity less signifi-
cant. The total time of processing 1000 clients was almost
seven times slower than the solution without polynomi-
als. Nevertheless, for small number of clients, this solu-
tion is actually more efficient, and total time is smaller
for the first 55 clients. The time per client has started
getting worse after the 30-th client, so it is reasonable
to switch between comparison algorithms at this point.
Since the alternative comparison has less network com-
munication, it should be theoretically better in settings
with very slow network connection and fast hardware.
We decided to conduct one more experiment to verify
this claim.

During the competition, the solutions were evaluated
using only 2 parallel processor threads, but we have also
tried to run the same algorithm without limiting their
number (using all 32 cores), to see if we get any advan-
tage. The results of the benchmarks with and without

polynomials can be found in Figs. 4 and 5, summarized
in Tables 4 and 5 respectively. We see that the polyno-
mial solution was still slower, although all 32 processors
on all three servers worked with 100% load during the
main computation. However, while the time improvement
of the solution without polynomials is not too significant
(although 1.5 extra hours still make a difference), we see
that the performance of polynomial solution is much bet-
ter than it was with 2 threads, and the 1000 clients have
been processed in 19 h 30 m instead of 88 h 8 m. This time,
the polynomial solution was more efficient that the non-
polynomial solution with up to 300 clients. The time per
client has started getting worse after the 160-th client. We
see that the alternative comparison indeed scales better
w.r.t. parallelization.

Discussion
We think that the results are good enough and can be
applied to real data. Depending on the requirements,
either the first or the second solution can be used.

Fig. 5 Second solution (w/ polynomials, no thread limit). Efficiency graph of the second solution with polynomial optimization. The number of CPU
threads is 32

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 44 of 55

Table 4 Second solution (w/o polynomials, no thread limit)

Housekeeping (avg per client) 0.28 s

Encrypting the hashes (avg per client) 6.3 s

Shuffling the encrypted hashes (avg per client) 0.50 s

Detecting duplicates (min of 1000 clients) 20 s

Detecting duplicates (max of 1000 clients) 40 s

Total (1000 clients) 11 h 20 m

The data that was provided by iDASH 2017 competition
organizers was idealized, i.e. it was already preprocessed
and assumed that e.g. the gender is labeled exactly “M”
and “F” and there are no other possible encodings. In a
practical application, we should think how much prepro-
cessing we agree to delegate to the data owner, and how
much we perform using secure multiparty computation.

We note that revealing “duplication pattern” is safe as
far as there are sufficiently many clients, so that leaking
how many patients have been present in exactly n centers
would be safe. This leakage would be bad in some extreme
cases, e.g with two medical centers with one patient, since
then the server will know whether that particular patient
has been in both centers or only one of them. However, if
the data is small, then slower and more secure algorithms
could be used for that anyway, such as finding privacy-
preserving set intersection between each pair of medical
centers to determine the duplicates.

One possible problem of Sharemind deployment is that
its protocols work under assumptions of the honest major-
ity and an honest-but-curious adversary. This means that
one needs to find three hosts who agree to set up an SMC
server, and who are trustworthy enough not to deliber-
ately break the computation, and clean the server from
all intermediate data after the computation has finished
(some challenges of real-world application deployment
are described e.g. in [31]). Sacrificing in efficiency, we
could use protocol sets like SPDZ [32] or MASCOT
[33], which are actively secure against a dishonest major-
ity. In any case, as far as we use secret sharing, we
need to assume that at least one server should remain
uncorrupted, or otherwise the computation parties will
collaborate to reconstruct the clients’ secrets, regardless
of the privacy-preserving algorithms used.

Table 5 Second solution (w/ polynomials, no thread limit)

Housekeeping (avg per client) 0.28 s

Encrypting the hashes (avg per client) 5.8 s

Shuffling the encrypted hashes (avg per client) 0.55 s

Detecting duplicates (min of 1000 clients) 14 s

Detecting duplicates (max of 1000 clients) 112 s

Total (1000 clients) 19 h 30 m

Possible future work
As discussed e.g. in [9], the quasi-identifiers are often
inconsistent in real applications, so exact comparison of
values is not sufficient to achieve accurate linkage results,
and some approximated string matching can be preferred.
Our algorithms cannot be extended to this setting directly,
since AES encryption maps similar strings to completely
different values. We could take some ideas from some pre-
vious works, and hash all n-grams of a string instead of
the entire string. Different n-grams should be encrypted
with different AES keys to avoid leaking similarities in
the string patterns. Nevertheless, this would already leak
more information, and a corrupted server would be able
to perform e.g. analysis of bigram frequencies, and there
could possibly be more attacks inspired by [12], even
though the attacks are adapted to Bloom filters that we do
not use in our solution. We conclude that the extension
to approximate matching would require a more careful
design and security analysis.

Conclusion
In this paper, we have proposed two methods for finding
duplicates between several databases. The implementa-
tion has been benchmarked on data of 1000 medical cen-
ters with 10000 records each, giving quite positive results,
which would be acceptable in real-world scenarios.

Abbreviations
AES: Advanced encryption standard; CSV: Comma separated values; PPRL:
Privacy-preserving record linkage; SMC: Secure multiparty computation; SHA:
Secure hash algorithm; UOWHF: Universal one-way hash function; VM: Virtual
machine; WAN: Wide area network

Acknowledgements
The authors want to thank Marju Ignatjeva who helped to set up the
Sharemind virtual machine for iDASH competition.

Funding
The research and the publication cost were funded by Estonian Research
Council, grant no. IUT27-1.

Availability of data and materials
The test data itself is not available anymore on the competition site. The virtual
machine of the implementation is not available due to Sharemind group’s
commercial interests.

About this Supplement
This article has been published as part of?BMC Medical Genomics?Volume 11
Supplement 4, 2018: Proceedings of the 6th iDASH Privacy and Security
Workshop 2017. The full contents of the supplement are available online
at?https://bmcmedgenomics.biomedcentral.com/articles/supplements/
volume-11-supplement-4.

Authors’ contributions
PL has developed the theory part and the corresponding algorithms. AP has
implemented these algorithms on Sharemind platform, and performed the
experiments. Both authors have read and approved the final manuscripct.

Ethics approval and consent to participate
Not relevant.

Consent for publication
Not relevant

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-4
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-4

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 45 of 55

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Cybernetica AS, Ülikooli 2, 51003 Tartu, Estonia. 2STACC, Ülikooli 2, 51003
Tartu, Estonia.

Published: 11 October 2018

References
1. iDASH 2017 competition . http://www.humangenomeprivacy.org/2017/.

Accessed 7 July 2018.
2. Ebner H, Hayn D, Falgenhauer M, Nitzlnader M, Schleiermacher G,

Haupt R, Erminio G, Defferrari R, Mazzocco K, Kohler J, Tonini G,
Ladenstein R, Schreier G. Piloting the european unified patient identity
management (eupid) concept to facilitate secondary use of
neuroblastoma data from clinical trials and biobanking, vol. 223. In:
Health Informatics Meets eHealth: Predictive Modeling in Healthcare -
From Prediction to Prevention, Proceedings of the 10th eHealth 2016
Conference, Studies in Health Technology and Informatics. Vienna: IOS
Press; 2016. p. 31–38. https://doi.org/10.3233/978-1-61499-645-3-31.

3. Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using
bloom filters. BMC Med Inform Decis Making. 2009;9(1):41. https://doi.
org/10.1186/1472-6947-9-41.

4. Karapiperis D, Verykios VS. A fast and efficient hamming lsh-based
scheme for accurate linkage. Knowl Inf Syst. 2016;49(3):861–84. https://
doi.org/10.1007/s10115-016-0919-y.

5. Vatsalan D, Christen P. Privacy-preserving matching of similar patients. J
Biomed Inform. 2016;59:285–98. https://doi.org/10.1016/j.jbi.2015.12.004.

6. Du W, Atallah MJ. Protocols for secure remote database access with
approximate matching, vol. 2. In: Ghosh AK, editor. E-Commerce Security
and Privacy. Advances in Information Security. Boston: Springer; 2001.
p. 87–111. https://doi.org/10.1007/978-1-4615-1467-1.

7. Alhaqbani B, Fidge C. Privacy-preserving electronic health record linkage
using pseudonym identifiers. In: HealthCom 2008 - 10th International
Conference on E-health Networking, Applications and Services.
Singapore: IEEE; 2008. p. 108–17. https://doi.org/10.1109/HEALTH.2008.
4600120.

8. Kho AN, Cashy JP, Jackson KL, Pah AR, Goel S, Boehnke J, Humphries
JE, Kominers SD, Hota BN, Sims SA, Malin B, French DD, Walunas TL,
Meltzer DO, Kaleba EO, Jones RC, Galanter WL. Design and
implementation of a privacy preserving electronic health record linkage
tool in chicago. J Am Med Inform Assoc. 2015;22(5):1072–80. https://doi.
org/10.1093/jamia/ocv038.

9. Vatsalan D, Sehili Z, Christen P, Rahm E. Privacy-preserving record
linkage for big data: Current approaches and research challenges. In:
Zomaya AY, Sakr S, editors. Handbook of Big Data Technologies. Cham:
Springer; 2017. p. 851–95. https://doi.org/10.1007/978-3-319-49340-4.

10. Kargupta H, Datta S, Wang Q, Sivakumar K. Random-data perturbation
techniques and privacy-preserving data mining. Knowl Inf Syst. 2005;7(4):
387–414. https://doi.org/10.1007/s10115-004-0173-6.

11. Kuzu M, Kantarcioglu M, Durham EA, Toth C, Malin B. A practical
approach to achieve private medical record linkage in light of public
resources. J Am Med Inform Assoc. 2013;20(2):285–92. https://doi.org/10.
1136/amiajnl-2012-000917.

12. Niedermeyer F, Steinmetzer S, Kroll M, Schnell R. Cryptanalysis of Basic
Bloom Filters Used for Privacy Preserving Record Linkage. J Priv
Confidentiality. 2014;6(2):59–79.

13. Kamm L. Privacy-preserving statistical analysis using secure multi-party
computation. 2015. PhD thesis, University of Tartu.

14. Sharmeind secure multiparty computation platform. https://sharemind.
cyber.ee. Accessed 7 July 2018.

15. Bogdanov D, Laud P, Laur S, Pullonen P. From Input Private to
Universally Composable Secure Multi-party Computation Primitives. In:
Datta A, Fournet C, editors. IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014. Computer
Society Press: IEEE; 2014. p. 184–98. https://doi.org/10.1109/CSF.2014.21.

16. Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure
multi-party computation for data mining applications. Int J Inf Sec.
2012;11(6):403–18.

17. Randmets J. Programming languages for secure multi-party computation
application development. 2017. PhD thesis, University of Tartu. http://hdl.
handle.net/10062/56298.

18. Dimitrov V, Kerik L, Krips T, Randmets J, Willemson J. Alternative
implementations of secure real numbers. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
CCS ’16. New York: ACM; 2016. p. 553–64. https://doi.org/10.1145/
2976749.2978348.

19. Laur S, Talviste R, Willemson J. From Oblivious AES to Efficient and
Secure Database Join in the Multiparty Setting, vol. 7954. In: Applied
Cryptography and Network Security. LNCS. Berlin: Springer; 2013.
p. 84–101.

20. Krips T, Willemson J. Hybrid model of fixed and floating point numbers in
secure multiparty computations, vol. 8783. In: Proceedings of the 17th
International Information Security Conference, ISC 2014. LNCS. Cham:
Springer; 2014. p. 179–97.

21. Kamm L, Willemson J. Secure floating-point arithmetic and private
satellite collision analysis. Int J Inf Secur. 2015;14:531–48.

22. Krips T, Willemson J. Point-counting method for embarrassingly parallel
evaluation in secure computation, vol. 9482. In: Garcia-Alfaro J, Kranakis E,
Bonfante G, editors. Foundations and Practice of Security: 8th International
Symposium, FPS 2015, Clermont-Ferrand, France, October 26-28, 2015,
Revised Selected Papers. LNCS. Cham: Springer; 2016. p. 66–82.

23. Araki T, Furukawa J, Lindell Y, Nof A, Ohara K. High-throughput
semi-honest secure three-party computation with an honest majority. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. New York: ACM; 2016. p. 805–17.
https://doi.org/10.1145/2976749.2978331.

24. Albrecht MR, Grassi L, Rechberger C, Roy A, Tiessen T. Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative
complexity, vol. 10031. In: Cheon JH, Takagi T, editors. Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I. Lecture Notes in
Computer Science; 2016. p. 191–219. https://doi.org/10.1007/978-3-662-
53887-6.

25. Naor M, Yung M. Universal one-way hash functions and their
cryptographic applications. In: Johnson DS, editor. Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA. New York: ACM; 1989. p. 33–43. https://doi.org/
10.1145/73007.73011.

26. Laur S, Willemson J, Zhang B. Round-Efficient Oblivious Database
Manipulation. In: Proceedings of the 14th International Conference on
Information Security. ISC’11, vol. 7001. Lecture Notes in Computer
Science. Xi’an: Springer; 2011. p. 262–77.

27. Laud P, Randmets J. A domain-specific language for low-level secure
multiparty computation protocols. In: Ray I, Li N, Kruegel C, editors.
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015. New
York: ACM; 2015. p. 1492–503. https://doi.org/10.1145/2810103.2813664.

28. Bogdanov D, Laur S, Talviste R. A practical analysis of oblivious sorting
algorithms for secure multi-party computation, vol. 8788. In: Bernsmed K,
Fischer-Hübner S, editors. Secure IT Systems - 19th Nordic Conference,
NordSec 2014, Tromsø, Norway, October 15-17, 2014, Proceedings.
Lecture Notes in Computer Science. Cham: Springer; 2014. p. 59–74.
https://doi.org/10.1007/978-3-319-11599-3.

29. NTL. A Library for doing Number Theory. http://www.shoup.net/ntl/.
Accessed 7 July 2018.

30. Laud P. A private lookup protocol with low online complexity for secure
multiparty computation, vol. 8958. In: Hui LCK, Qing SH, Shi E, Yiu SM,
editors. Information and Communications Security - 16th International
Conference, ICICS 2014, Revised Selected Papers. Lecture Notes in
Computer Science. Cham: Springer; 2014. p. 143–57. https://doi.org/10.
1007/978-3-319-21966-0.

31. Bogdanov D, Kamm L, Kubo B, Rebane R, Sokk V, Talviste R. Students
and taxes: a privacy-preserving study using secure computation. PoPETs.
2016;2016(3):117–35.

http://www.humangenomeprivacy.org/2017/
https://doi.org/10.3233/978-1-61499-645-3-31
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1016/j.jbi.2015.12.004
https://doi.org/10.1007/978-1-4615-1467-1
https://doi.org/10.1109/HEALTH.2008.4600120
https://doi.org/10.1109/HEALTH.2008.4600120
https://doi.org/10.1093/jamia/ocv038
https://doi.org/10.1093/jamia/ocv038
https://doi.org/10.1007/978-3-319-49340-4
https://doi.org/10.1007/s10115-004-0173-6
https://doi.org/10.1136/amiajnl-2012-000917
https://doi.org/10.1136/amiajnl-2012-000917
https://sharemind.cyber.ee
https://sharemind.cyber.ee
https://doi.org/10.1109/CSF.2014.21
http://hdl.handle.net/10062/56298
http://hdl.handle.net/10062/56298
https://doi.org/10.1145/2976749.2978348
https://doi.org/10.1145/2976749.2978348
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1007/978-3-662-53887-6
https://doi.org/10.1007/978-3-662-53887-6
https://doi.org/10.1145/73007.73011
https://doi.org/10.1145/73007.73011
https://doi.org/10.1145/2810103.2813664
https://doi.org/10.1007/978-3-319-11599-3
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-319-21966-0
https://doi.org/10.1007/978-3-319-21966-0

Laud and Pankova BMC Medical Genomics 2018, 11(Suppl 4):84 Page 46 of 55

32. Damgård I, Pastro V, Smart NP, Zakarias S. Multiparty computation from
somewhat homomorphic encryption, vol. 7417. In: Safavi-Naini R,
Canetti R, editors. CRYPTO. Lecture Notes in Computer Science. Berlin:
Springer; 2012. p. 643–62.

33. Keller M, Orsini E, Scholl P. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers
AC, Halevi S, editors. New York: ACM; 2016. p. 830–42. https://doi.org/10.
1145/2976749.2978357.

https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Technical details of the task
	Related work

	Methods
	The Sharemind platform
	The first solution: output all results once in the end
	Cryptographic building blocks
	Computation on the client side
	Computation on the server side
	Start-up.
	Upload
	Computation of results.

	The second solution: output results immediately
	Computation on the client side
	Computation on the server side
	Speeding up local computations
	Alternative comparison

	Results
	First solution
	Second solution

	Discussion
	Possible future work

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this Supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

