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classification of Patau, Edwards, Down,
Turner and Klinefelter Syndrome based on
first trimester maternal serum screening
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Abstract

Background: The usage of Artificial Neural Networks (ANNs) for genome-enabled classifications and establishing
genome-phenotype correlations have been investigated more extensively over the past few years. The reason for
this is that ANNs are good approximates of complex functions, so classification can be performed without the need
for explicitly defined input-output model. This engineering tool can be applied for optimization of existing methods
for disease/syndrome classification. Cytogenetic and molecular analyses are the most frequent tests used in prenatal
diagnostic for the early detection of Turner, Klinefelter, Patau, Edwards and Down syndrome. These procedures can
be lengthy, repetitive; and often employ invasive techniques so a robust automated method for classifying and
reporting prenatal diagnostics would greatly help the clinicians with their routine work.

Methods: The database consisted of data collected from 2500 pregnant woman that came to the Institute of
Gynecology, Infertility and Perinatology “Mehmedbasic” for routine antenatal care between January 2000 and December
2016. During first trimester all women were subject to screening test where values of maternal serum pregnancy-
associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (β-hCG) were measured. Also, fetal
nuchal translucency thickness and the presence or absence of the nasal bone was observed using ultrasound.

Results: The architectures of linear feedforward and feedback neural networks were investigated for various training
data distributions and number of neurons in hidden layer. Feedback neural network architecture out performed
feedforward neural network architecture in predictive ability for all five aneuploidy prenatal syndrome classes.
Feedforward neural network with 15 neurons in hidden layer achieved classification sensitivity of 92.00%. Classification
sensitivity of feedback (Elman’s) neural network was 99.00%. Average accuracy of feedforward neural network was 89.
6% and for feedback was 98.8%.
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Conclusion: The results presented in this paper prove that an expert diagnostic system based on neural networks can
be efficiently used for classification of five aneuploidy syndromes, covered with this study, based on first trimester
maternal serum screening data, ultrasonographic findings and patient demographics. Developed Expert System proved
to be simple, robust, and powerful in properly classifying prenatal aneuploidy syndromes.

Keywords: Combined test, Trisomy, Fetal aneuploidy, Prenatal diagnosis, Artificial neural networks, Feedforward neural
network, Feedback neural network

Background
A normal human cell is made up of 46 chromosomes that
are grouped into homologous pairs (or classes): 44 auto-
somes, and two sex chromosomes, which specify gender
(XX for female and XY for male) [1]. Each chromosomal
homologous pair consists of one maternal and one paternal
chromosome that pair up with each other inside a cell
during meiosis [2]. Chromosomal disorders fall into two
main categories such as numerical and structural abnor-
malities [3]. Chromosomal anomalies or aneuploidy, repre-
sented primarily by numerical change, are the single
greatest contributor to prenatal morbidity and mortality
[4]. Since chromosomal abnormalities are powerful in detec-
tion and diagnosis of various genetic disorders, chromosome
analysis (karyotyping) is a fundamental clinical procedure
most frequently performed in genetic laboratories. There are
several reasons for referral for cytogenetic analysis, but
advanced maternal age is still the major reason. Maternal
age is a major factor in producing aneuploidy in humans.
The most frequent anomaly associated with maternal age is
Trisomy 21 [5]. Affected fetuses can be identified early in
pregnancy through amniocentesis, thus providing the
woman with the option for selective termination or continu-
ation of the pregnancy. It is most important that accurate
genetic testing and counseling is provided.
All obstetricians generally offer first trimester maternal

serum screening for aneuploidy to their pregnant patients,
irrespective of patient’s age. This minimally invasive
screening test provides patient with a risk assessment and is
not to be used as definitive diagnosing tool. If the results of
maternal serum screening are concerning and suggestive of
trisomies the patient may opt for confirmatory diagnostic
methods, which would require patient to undergo an
invasive procedure amniocentesis or chorionic villus
sampling (CVS). A diverse range of diagnostic tests are cur-
rently available for the detection of prenatal chromosomal
aberrations. Karyotyping, fluorescence in situ hybridization
(FISH), quantitative fluorescence polymerase chain reaction
(QF-PCR), array comparative genomic hybridization
(aCGH), and the next-generation sequencing (NGS) are the
common methods used for prenatal diagnostics [4–10].
Karyotyping analysis aims to assess the possible pres-

ence of genetic defects, identify individual chromosomes
in a metaphase cell and arrange them in order based on

the established atlas [11]. Today, use of image processing
and artificial intelligence techniques has considerably
increased in many medical practice fields. In automated
cytogenetics, general computerized image processing
and analysis techniques as well as rule based classifica-
tion algorithms for karyotyping have been in use, since
the 70s, replacing the human based cutting up chromo-
some photographs with scissors and their human based
arrangements.
Developing tools for disease classification can be

extremely extensive and challenging task, especially
when the association between input and target values is
non-linear and depending on multiple factors [12].
Machine learning methods such as Artificial Neural
Networks (ANNs) have been considered as promising
tools for overcoming these difficulties since they do not
require analytical model of observed process [12]. The
theory of neural networks is still growing field due to
their ability to derive meaning from complicated or
imprecise data and because they use different approach,
parallel data processing instead of algorithmic approach
to problem solving like conventional computers.
Different ANN architectures have been used for various
purposes, such as classification, pattern recognition,
prediction, control and optimization [13]. The neural
networks, in terms of data processing, mimic physical
structure of human nervous system consisting of artifi-
cial neurons. These units serve as processors that are in-
terconnected and organized into layers [14]. The
relationship between input and output is determined by
the network architecture and learning algorithm [14].
Learning is an iterative process of adjusting ANN inner
parameters, weights and biases until the performance
criteria is met. Most usually that performance criteria is
threshold of error function. The ability that differentiates
ANNS to other data processing tools is the ability to
learn and improve its performance from examples. Once
trained, ANN is able to predict unknown future outcomes
of the same process. ANNs can be classified into two
groups based on internal information flow: feedforward
and feedback neural networks. Most commonly used type
of feedforward architecture is the one with back propaga-
tion learning algorithm and as for feedback neural
network, Elman’s architecture is most commonly used.
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The usage of ANN in disease classification happens
very often [15–27], though there have been only few
studies investigating neural networks in genome-enabled
predictions and classifications [28, 29]. As for cytogen-
etic analysis, in recent years, several research groups
have developed and tested different ANNs for the classi-
fication of metaphase chromosomes. The main goal in
these studies was to develop automated computer-
assisted banded chromosome detection, using various
methods and various ANNs architectures for classifica-
tion of all 24 types of chromosomes [30–34]. Although
many efforts have been made to develop computerized
schemes for automated karyotyping and syndrome
diagnosis, no schemes can get be performed without
substantial human intervention [31, 35]. On the other
hand, to date ANNs have not been used for analyzing
cytogenetic data or screening data in determining or
predicting trisomies or any prenatal syndromes.
In this paper, instead of developing an automated

method to classify chromosome classes used for
determining and distinguishing between Turner, Patau,
Klinefelter, Edwards and Down syndrome, we focus on
developing an automatic scheme for classifying chromo-
somal trisomies using results from combined/double
screening tests in the first trimester of pregnancy,
ultrasonographic findings and maternal age. Validation
of system output was done by karyotyping or known
pregnancy outcome.

Methods
Sample collection
The database consisted of 2500 pregnant women data
who received a routine antenatal care between January
2000 and December 2016. The first trimester combined
test was offered routinely at 11 to 13.6 weeks of gesta-
tion, to measure the values of maternal serum levels of
maternal serum pregnancy-associated plasma protein A
(PAPP-A) and free beta human chorionic gonadotropin
(β-hCG). All women underwent ultrasound examination
also to acquire information on fetal nuchal translucency
thickness and the presence or absence of the nasal bone.
Ultrasound verification was done on the General Electric

730 Volusion Exp, with convex probe 3.5–7 MgHz
(multidimensional scanning). Additional parameter in the
database was maternal age since the correlation between
maternal age and presence of the prenatal syndrome has
been proven [5]. After ultrasound examination, maternal
blood was sampled using serum separator tubes (4 ml each)
for the analysis. The serum was separated by centrifugation
and stored at 4 °C until being tested. The blood samples
were analyzed by using an automated Siemens Immulite
1000 system (Siemens Healthcare, Erlangen, Germany).
Analysis of NT thickness, PAPPA-A and β-hCG, along with
patient demographics was performed using the Prisca

software (Siemens Healthcare, Erlangen, Germany). The
pregnancy outcome was known for all the subjects included
in the study known, either by amniocentesis or by child-
birth. Those women with an elevated risk of (≥1 in 250) of
carrying a fetus with trisomy 13, 18, or 21, and those
women with advanced maternal age were offered counseling
with the option for invasive diagnostic test. In cases when
combined screening test estimated lower risk for trisomies,
the outcome was further validated by childbirth.
Cytogenetic analysis on long-term cultured amniocytes

was performed using standard manufacturer’s protocol
(Amniomax, Invitrogen, Carlsbad, CA, USA). Metaphase
chromosome spreads were prepared on a glass micro-
scope slide in accordance with standard cytogenetic pro-
cedure and in accordance with the European Society of
Human Genetics (ESHG) and European Cytogenetics
Association (E.C.A) guidelines [36–38]. Chromosomes
were aged and banded using G-Bands by pancreatin and
Giemsa staining technique. To investigate the total num-
ber and structure of the chromosomes, twenty metaphase
cells were visualized and analyzed by an experienced cyto-
genetics technologists using Zeiss microscope Axioskop2
plus (Zeiss, Jena, Germany) with the assistance of the
MetaSystems imaging system. Results were reported in
accordance with the International Standing Committee on
Human Cytogenetic Nomenclature [11]. In the case of
pathological karyogram findings, spouses were invited for
genetic counseling at the Institute where multidisciplinary
team (genetics, obstetrician and biologist) explained rele-
vant medical facts regarding the findings. This diagnostic
method was chosen due to availability since other invasive
diagnostic testing methods such as chronic villi sampling
(CVS) is not performed in Bosnia and Herzegovina, there-
fore it was not offered to any of our patients.
The dataset containing patient characteristics, test re-

sults, and pregnancy outcomes needed for development
of the system was obtained from genetics laboratory at
the Institute of Gynecology, Infertility and Perinatology
“Mehmedbasic” in Sarajevo. In this dataset 1500 samples
were of healthy subjects and 1000 samples were with
diagnosis of aneuploidy.
Summary statistics of database is presented in Table 1.

Out of 2500 observed samples, 52.5% were male and
47.5% were female samples. Minimum maternal age in
this dataset is 16 years and the maximum age is 49 years.
Mean maternal age of pregnant women who underwent
amniocentesis is 31.5 years. Out of 2500 samples, 40%
were with disease classification and 60% were of healthy
subjects. Out of samples with confirmed diagnosis of
prenatal syndrome most were of Klinefelter Syndrome
(26.83%), followed with Down syndrome (24.31%),
Edwards Syndrome (19.17%), Turner Syndrome (16.11%)
and Patau Syndrome (13.58%). According to these
samples, training dataset folds were created.
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The Expert System based on Artificial Neural Network
consists of 5 input parameters that are: maternal serum
pregnancy-associated plasma protein A (PAPP-A), free
beta human chorionic gonadotropin (β-hCG), mother’s
age, fetal nuchal translucency thickness, the presence or
absence of the nasal bone and one output parameter
indicating that the tested subject has one of the prenatal
syndromes or is healthy.
In designing neural networks for solving specific

problem, factors such as neural network architecture,
number of hidden neurons, training dataset distribution
and training algorithm have significant impact on overall
accuracy of developed system [39]. We investigated two
different neural network architectures, feedforward and
feedback, for various number of neurons in hidden layer,

which are according to the application experts, sufficient
to properly perform the classification [15, 40–42].

Single hidden layer feedforward ANN with
back-propagation
A feedforward neural network is probably the most
common type of neural networks for classification and
prediction [13]. As it can be seen from Fig. 1, network
inputs are not affected with network output in any way.
The output is result of modifiable synapses, represented
as summations of signals from hidden and input layer.
In hidden layer, the inputs are linearly combined with

vector of weights and biases (inner neural network
parameter). The resulting linear combination of such
input is then transformed to neuron output by transfer

Table 1 Summary statistics for dataset

Male Female

Gender 52.5% 47.5%

Min Max Mean

Maternal age 16 49 31.5

Syndrome classification data

Training dataset Subsequent validationdataset Total number of samples Percentage of the overall dataset

Prenatal syndrome samples 800 200 1000 40%

Normal samples 1200 300 1500 60%

Down Syndrome 292 73 243 24.31%

Edwards Syndrome 230 142 192 19.17%

Kleinfelter Syndrome 322 80 268 26.83%

Turner Syndrome 194 48 161 16.11%

Patau Syndrome 162 41 136 13.58%

Fig. 1 Architecture of a single layer feedforward neural network. n is number of inputs and m is number of neurons in hidden layer; f(·) and g(·)
are transfer functions in hidden and output layer respectfully. Connections between neurons are represented with weight factors w; a is bias
(internal neural network parameter); Σ indicates synapses – summation of signals from previous neurons
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function. The output of single neuron in hidden layer is
represented with following equation:

zi ¼ f ai þ
Xn

k¼1
wikxk

� �
ð1Þ

where wik is weight of xk input to zi output, and i is the
number of neuron in hidden layer (1-m).
The output of ANN is formed as linear combination

of hidden layer neuron outputs. These connections
between hidden and output layer are also weighted. The
output is calculated as:

y ¼ g ao
0 þ

Xm

k¼1
wi

0
zi

� �
ð2Þ

The transfer functions can be linear and nonlinear. To
model non-linear relationship between inputs and out-
puts, like in cytogenetic analysis result and syndrome
classification, non-linear transfer function such as logsig
in hidden layer was used ðlogsigðxÞ ¼ 1

1þe−xÞ . In output
layer linear function (purelin(x) = x. Computationally,
learning in this type of ANN architecture is regression
process of adapting weights and biases until minimum
error value is achieved. Simple iterative algorithm that
can be used in training of this type of neural network is
back-propagation algorithm. The output values are com-
pared with the correct answer to compute the value of
some predefined error-function. The weights and biases
of neural network are corrected in each iteration. Most
commonly used error function if mean square error
(MSE). After training is completed, neural network
parameters are held constant for subsequent analysis. This
type of ANN can be used for modeling most problems
while keeping simple architecture and low computational
complexity. As a performance measure for trained neural
network, absolute deviation from the actual output value
can be used.

Elman recurrent artificial neural network
Elman neural network has feedback (recurrent) archi-
tecture where connections between neurons form a
directed cycle. The main difference between feedforward
and feedback neural network is that feedback neural
networks beside the input and output layer consist of
recurrent layer which introduces one-step delay in hidden
layer. This recurrent layer acts like memory in network
architecture. This type of neural networks, because of this
ability, is mostly used for recognition. Elman neural
network is a three-layer network with vertically architec-
ture shown in Fig. 2.
This neural network architecture also consists of input

layer, hidden layer and output layer called the feed-
forward loop and context layer which makes back-
forward loop with hidden layer which makes the neural

networks sensitive to the history of input data. The
hidden neuron outputs are calculated as follows:

zi ¼ f ai þ
Xn

k¼1
wikxk jð Þ þ

Xm

k¼1
wikzk j−1ð Þ

� �

ð3Þ

Where j stands for discrete time, wik is weight of xk
input to zi output, and i is the number of neuron in
hidden layer (1-m). The output is calculated as:

y ¼ g ao
0 þ

Xm

k¼1
wi

0
zi

� �
ð4Þ

The gradient descent (GD) algorithm is most com-
monly used for training of Elman’s neural networks. The
error between the network output and the desired out-
puts minimized in the steepest descent [43]. At each
iteration the input is propagated in a standard feed-
forward architecture, and then a learning rule is applied.
The back-forward loop results in the context units
always maintaining a copy of the previous values of the
hidden units, thus the network can maintain a sort of
state, allowing it to perform such tasks as sequence-
prediction that are beyond the power of a standard
multilayer perceptron.

Results
Before developing neural network architecture, total
database consisted of 2500 samples was divided into
twodisjoint subsets, training and subsequent validation
data. The training data consisted of 2000 samples (80%
of overall database) and subsequent validation (testing of
the system) was performed with the rest of the data as it
can be seen from the Fig. 3. Out of 2000 samples 1200
were of healthy subjects and the rest were as follows:
Klinefelter Syndrome 268 samples, Down syndrome 243
samples, Edwards Syndrome 192 samples, Turner
Syndrome 161 samples and Patau Syndrome 136
samples, therefore in total 800 samples as presented in
Table 1. This dataset distribution is common among
researchers in the field when dealing with relatively
small number of samples [44].
Due to database size and non-linearity of provided

data for neural network training k-fold cross valid-
ation was used. The 2000 training samples were di-
vided into 10 folds. This number of folds was chosen
since the training dataset is comprised of 80% of data-
base and according to experts in this division is suffi-
cient [45]. In each iteration Levenberg – Marquardt
algorithm (LMA) was used, which is common training
algorithm in data classification [46]. The starting
network weights were initialized with random values.
At each training iteration train/test performance was
evaluated as Mean Square Error between the predicted
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and actual values (MSE), where n is total number of
samples:

MSE ¼ 1
n

Xn

i¼1
Xpredicted−Xactual
� �2 ð5Þ

The single performance estimation of neural network
training process was generated by averaging results from
k-folds. By using the k-fold cross validation the problem
of over fitting was reduced. In case of over fitting the
developed system has very good training performance
but it’s predictive ability on unseen data is very poor.
Developed neural network architectures were compared

based on accuracy of classification of prenatal syndromes.
To compare performance on neural network architectures,
absolute error was used also. For validation purpose,
absolute error is calculated as follows:

Errorabsolute ¼ Outputtarget−ANNoutput ð6Þ

Dependency of classification accuracy in both architec-
ture types to the number of neurons in hidden layer is
examined. While number of input and output neurons is
determined with data structure and process modeling,
performance of training is dependent on complexity of
neural network and number of neurons in hidden layer
[30, 32]. Poorly defined number of neurons in hidden
layer can cause over fitting problem, which leads to good
training performance and very bad testing performance.
There are various methods for choosing fixed number of
neurons in hidden layer [47, 48], but there is no generally
accepted one for determining the number of neurons in
single hidden layer that would efficiently approximate any
given function or process. Despite the new methods devel-
oped for this purpose, the most researchers use trial rule.
This rule was used in this study also. Number of neurons
in hidden layer is set to be 5, 10, 15, 17 and 20 and
performance was calculated.
For each step detailed results are presented in Fig. 4 for

feedforward neural network. The output performance is

Fig. 2 Elman neural network Architectures are context units that can be treated as the memory units. There are connections from the middle
(hidden) layer to these context units fixed with a weight of one

Fig. 3 Training data set consisted of 1200 samples of normal
subjects, 161 of Turner syndrome, 268 Klinefelter syndrome, 192
Edwards syndrome, 243 Down syndrome, 136 Patau Syndrome
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presented in Table 2. From the data presented in Fig. 4
and Table 3 it can be concluded that the best performance
is achieved with 15 neurons for feedforward architecture.
For each number of neurons, performance and abso-

lute error of training dataset was calculated for feedback
architecture also. Detailed results are presented in Fig. 5
and Table 3. From the data presented it can be con-
cluded that the best performance is achieved with 17
neurons for feedback architecture.

Figure 6 shows the performance of architectures of
neural networks chosen for further development of sys-
tem for classification between prenatal syndromes.
Those networks are feedforward neural network with 15
neurons and Elman neural network with 17 neurons.
MSE for feedforward ANN was 15.6316 and for Elman’s
ANN 1.5752.
Neural network subsequent validation performance

for classification of five prenatal syndromes based on
cytogenetic analysis and patient demographics is per-
formed with 1000 samples out of which 1200 were
healthy subjects, and 800 were subjects with disease
with syndrome sample distribution as indicated in
Table 1.
Based on data presented in Table 4, sensitivity of

92.00% was achieved for feedforward neural network
architecture. The sensitivity of feedback neural network
was higher and the value was 99.00%. Sensitivity was cal-
culated based on following formula:

Fig. 4 Training performance of Feedforward neural network with different numbers of hidden neurons

Table 2 Feedforward model comparison based on different
numbers of neurons in hidden layer

Number of hidden neurons MSE calculation

5 0.0096

10 0.0075

15 0.0032

17 0.0309

20 0.0096
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Sensitivity ¼ True postitive
True postivie þ False negative

ð7Þ

While specificity was calculated based on:

Specificity ¼ True negative
False positive þ True negative

ð8Þ

Detailed classification hits and misses of both neural
networks are presented in Tables 4 and 5. Average

accuracy of feedforward neural network was 89.6% and
for feedback was 98.8% (Table 6).

Discussion
To design an expert diagnostic system based on neural
networks for classification of prenatal aneuploidy syn-
dromes, we presented a novel method based on the results
of combined/double test in the first trimester of preg-
nancy, ultrasonographic findings and maternal levels of
free β-hCG and PAPP-A. The Expert System technique
proposed in this paper potentially opens new avenues for
the development of inexpensive, yet effective, prenatal
aneuploidy screening tests. The simplicity and accuracy of
this method make it a good candidate for clinical imple-
mentation as standard software for screening procedure.
There has been significant increase in usage of artifi-

cial neural networks in medicine [49], and specifically, in
pediatrics. There are several studies based on determin-
ing one out of five prenatal syndromes analyzed in this
study. Wojtowicz et al. [50] in their study use pheno-
typic features in diagnosing Down syndrome, postnatal,

Table 3 Elman model comparison based on different numbers
of neurons in hidden layer

Number of hidden neurons MSE calculation

5 0.9535

10 0.7194

15 0.0856

17 0.3224

20 0.8710

Fig. 5 Training performance of Elman neural network with different numbers of hidden neurons
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based on features versus genotype data and patient
demographics that were done prenatal. In other study
Wojtowicz et al. [51] discuss a new system that is used
to solve the problem of the recognition of the dermato-
glyphic pattern and the understanding of the classifica-
tion process of the symptoms of Down syndrome. This
system is based on the combination of text knowledge
found in the scientific literature describing Down syn-
drome with the knowledge obtained from the analysis of
dermatoglyphic indices characteristic of Down syndrome
with the use of digital pattern recognition techniques. In-
stead of numerical values used for classification of pre-
natal syndromes in this study Wojtowicz et al. [51] use
pattern recognition algorithms for determining the Down
syndrome.
Also, for postnatal determination of Turner syndrome

Naïve Bayesian neural network has been proposed in
study by Pereira et al. [52]. The syndrome classification

was based on nine input parameters, phenotype attributes.
The problem encountered in building the Bayesian
network and the forming of an expert probabilistic system
was to obtain knowledge, i.e. database of useful experi-
ment results.
A large number of different neural network structures

have been constructed, trained and tested to a large data-
base of pregnant women characteristics, aiming at generat-
ing aclassifier-predictor for the presence of chromosomal
abnormalities. Soleimani et al. [53] in their study used
3-layer artificial neural network with back propagation
learning algorithm to predict development disorders based
only on perinatal data. True prediction of developmental
disorder, obtained in this study was 83.1%. In our study,
both feedforward and feedback neural network architecture
used Levenberg – Marquadat training algorithm and ex-
hibit higher accuracy than this multilayer neural network
explored in previously mentioned study.

Fig. 6 Training performance of Feedforward neural network (15 neurons) and Elman neural network (17 neurons)

Table 4 Feedforward neural network classification accuracy during subsequent validation

Feedforward Neural Network Σ Normal subject Down Syndrome Edwards Syndrome Kleinfelter Syndrome Turner Syndrome Patau Syndrome

Normal subject 300 264 12 4 11 7 2

Down Syndrome 51 2 47 0 1 0 1

Edwards Syndrome 42 0 2 40 0 0 0

Kleinfelter Syndrome 86 1 0 2 81 1 1

Turner Syndrome 15 1 2 0 0 12 0

Patau Syndrome 6 2 0 0 0 0 4
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Nicolaides et al. [54] in their study used artificial
neural network for non-invasive chromosomal abnor-
mality screening. The best results were obtained when
using a multi-layer neural structure having an input, an
output and three hidden layers. The percentage of
abnormal cases correctly predicted was 85.1%. In the
same study, Turner syndrome was predicted with 42.9%.
In our study, classification of Turner syndrome was
higher when Elman architecture was used and lower
than mentioned one when feedforward architecture was
used. Also mentioned researchers incorporated “genetics”
results to compare or to show “false negative and false
positive” results.
Other analysis application of neural networks in pre-

natal diagnostics relay on using these systems for
chromosome identification. For instance, Wang et al.
[40] built multi-feature ANN metaphase chromosome
classifier based on 150 metaphase chromosome cell
images (2300 individual chromosomes) from both
normal and abnormal peripheral blood and amniotic
fluid samples. Similar to our ANN design, their ANNs
had feed-forward structure with three layers composed
of: input, hidden and output neurons.
In the future work, the aim of the researchers is to

develop Graphical User Interface for implemented Expert
System, as it is practice in the other similar studies [55], so
physicians will be able to use it in friendlier environment.

Conclusions
A chromosome disorder is caused by an alteration in the
number or genetic structure of chromosomes. A trisomy
is a chromosomal disorder characterized by an additional
chromosome, meaning that the affected person has 47

chromosomes instead of 46. The most common forms of
trisomy are: Down syndrome, Edwards syndrome, Patau
syndrome and Klinefelter. Children affected by trisomy
usually have a range of birth defects, including delayed
development and intellectual disabilities.
Cytogenetic and advanced molecular analyses are convin-

cing prenatal diagnostic investigation along with clinical
suspicions and biochemical screening tests. Microscope
analysis and computer imaging are the most common
methods used for prenatal diagnostics. However, visual
karyotyping using microscopic images is time-consuming
and labor intensive, which can reduce the diagnostic
efficiency and accuracy. Hence, using computer-based
expert diagnostic systems can significantly contribute to the
evaluation of prenatal diagnostic screening test results and
can be an adjunct to routine chromosomal analysis.
Aneuploidies involving 13, 18, 21 and sex (X and Y)

chromosomes account for the majority of all chromosome
abnormalities in live-born infants. The risk of chromo-
somal abnormality in the fetus increases with increasing
maternal age. Rapid diagnosis of fetal chromosome anom-
alies may facilitate clinical decision-making, especially
when a fetal abnormality is detected late in pregnancy.
In most cases, the loss of a whole chromosome is

incompatible with life and will result in early miscarriage
or stillbirth. If the extra genetic material is an entire
chromosome, the effect is largely lethal.
In this study, we used two neural network architectures

to classify between five prenatal syndromes based on the
results of maternal serum screening tests, ultrasonographic
findings and patient demographic. The aim of this work
was to examine efficiency of different neural network
architectures for this task. This study has proven that rela-
tively simple neural network architecture, such as feed-
forward, can have high classification accuracy. Because of
the non-linear input-output relationship better accuracy of
classification can be achieved with recursive neural
network architecture, such as Elman architecture. To our
knowledge, this is the first application of ANN developed
for classification offirst trimester maternal serum screening
samples. Nonetheless, we expect that this ANN system can
be expanded to other syndromes and other sample types.
This supports the potential use for the fast and reliable
detection of genetic disorders and fetal well-being.

Table 5 Elman neural network classification accuracy during subsequent validation

Elman Neural Network Σ Normal subject Down Syndrome Edwards Syndrome Kleinfelter Syndrome Turner Syndrome Patau Syndrome

Normal subject 300 296 1 0 0 2 1

Down Syndrome 51 0 51 0 0 0 0

Edwards Syndrome 42 1 0 43 0 0 0

Kleinfelter Syndrome 86 0 0 0 85 0 1

Turner Syndrome 15 0 0 0 0 0 0

Patau Syndrome 6 0 1 0 1 0 4

Table 6 Subsequent validation performance results of
developed neural networks

Total
population

Σ Feedforward ANN Feedback ANN

Syndrome Healthy Syndrome Healthy

Healthy 300 36 264 4 296

Syndrome 200 184 16 198 2

Sensitivity [%] 92.00% 99.00%

Specificity [%] 88.00% 98.67%

Average accuracy 89.6% 98.8%
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There are several limitations in thisstudy. Forinstance,
the use of a single health center and single equipment dur-
ing the study. The second important limitation of the study
is the limited number of “abnormal” samples. Nevertheless,
the analysis program’s performance is limited to input
information and knowledge and medical expert cannot get
more than he or she has donated the system.
The impact of developed system is that it enables classi-

fication of prenatal syndromes based on input parameters
that can be acquired with relatively non-invasive and low
cost methods. Developed system comprises of expert
knowledge in this field since all diagnosis were previously
revised by field professional. By enlarging the database
with various datasets regarding demographics system
accuracy can be improved and the usage of the system
expanded to other regions. This system can be used instead
of commercial prenatal syndrome screening software’s espe-
cially in low-income countries where healthcare systems are
dealing with rising costs of diagnostic and disease treatment.
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