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Abstract

Sickle cell disease and β thalassemia are common severe diseases with little effective pathophysiologically-based
treatment. Their phenotypic heterogeneity prompted genomic approaches to identify modifiers that ultimately might be
exploited therapeutically. Fetal hemoglobin (HbF) is the major modulator of the phenotype of the β hemoglobinopathies.
HbF inhibits deoxyHbS polymerization and in β thalassemia compensates for the reduction of HbA. The major success of
genomics has been a better understanding the genetic regulation of HbF by identifying the major quantitative trait loci
for this trait. If the targets identified can lead to means of increasing HbF to therapeutic levels in sufficient numbers of
sickle or β-thalassemia erythrocytes, the pathophysiology of these diseases would be reversed. The availability of new
target loci, high-throughput drug screening, and recent advances in genome editing provide the opportunity for new
approaches to therapeutically increasing HbF production.

Introduction
Hemoglobin contains 2 α-like and 2 β-like globin subunits.
The genes encoding the subunits and their hemoglobin
products are shown in Fig. 1 along with a brief classification
of hemoglobinopathies and thalassemia. Globin, the protein
moiety of hemoglobin, is affected by more than 1500
unique mutations that alter its structure, function and ex-
pression [1]. The number of children born each year with
clinically significant hemoglobinopathies is estimated to be
300,000 to 500,000; 70 % have sickle cell disease [2–4].
Eighty percent of affected patients are born in developing
countries where these diseases are a major health burden
[5]. This high concentration is the sequelae of endemic
malaria and the protection afforded carriers of globin gene
mutations, however, the burden of disease from hemoglo-
binopathies is now global.
Hemoglobinopathies are single gene Mendelian disorders.

Nevertheless there is substantial phenotypic heterogeneity
within a single genotype of disease. Genetics have a major
role in determining phenotypic heterogeneity. Association
studies using candidate genes and genome-wide approaches
have provided clues to loci that might mediate phenotypic
variation but with 2 notable exceptions a detailed

understanding of the relationship between putative modify-
ing genes and the phenotypes of sickle cell disease and
β thalassemia has not been achieved. The greatest pro-
gress has been made in defining genomic regions and
specific sequence variants that modulate expression of
the HbF genes, HBG2 and HBG1. HbF is the major
known modulator of the phenotype of the β hemoglo-
binopathies so the application of these discoveries has
the potential to improve care and guide development of
new and better therapeutics.

Sickle cell disease
A point mutation in the β-globin gene (HBB) specifies the
production of HbS, which polymerizes when deoxygen-
ated. The damaged sickle erythrocyte is the proximate
cause of vascular occlusion and anemia. The sickle
erythrocyte has a lifespan about 1/10th that of a normal
erythrocyte. Abnormal sickle erythrocytes are inflexible
and obstruct blood flow leading to tissue damage and
pain and membrane damage leads to hemolytic anemia.
Clinical complications start early and include episodic
painful vasoocclusive episodes that can lead to wide-
spread tissue damage. Intracellular HbS concentration
is a major determinant of disease severity and this can
be reduced by increasing the concentration of HbF, or
reducing mean cell HbS concentration by other means.
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Thalassemia
Thalassemia is typified by imbalanced α- and β-globin chain
synthesis and anemia. More than 400 mutations are associ-
ated with thalassemia [1]. The 2 most common thalassemia
syndromes affect expression of β- and α-globin. In β thalas-
semia, unpaired α globin chains precipitate, impairing the
maturation of erythroid precursors causing ineffective
erythropoiesis. Anemia and expansion of erythroid precur-
sors with expanded hematopoiesis in bones and other or-
gans occurs. In α thalassemia, underproduction of α globin
leads to β4 and γ4 homotetramers that have high oxygen af-
finity, are ineffective oxygen transporters, precipitate when

oxidized, and cause membrane dysfunction, erythrocyte
damage and shortened cell survival [6]. The clinical course
of both α and β thalassemia is heterogeneous and depends
in part on the impairment of globin synthesis and the ratio
of α and non-α chains.

Current therapies
Treatment is imperfect. The management of sickle cell
anemia and β thalassemia begins with carrier detec-
tion and parenteral counseling followed by screening
for selected complications, supportive care, judicious
use of blood transfusions, and hydroxyurea in sickle

Fig. 1 a Arrangement of the β- and α-globin gene clusters and their regulatory regions, The LCR (locus control region) and HS-40 are the major
enhancers of expression within the HBB and HBA gene clusters, respectively. HbA is a tetramer of normal α- and β-globin chains. b. The expression of
the globin genes changes throughout development. Embryonic ε globin is produced in the embryo, fetal γ-globin during most of gestation and the
major adult β globin from mid-gestation onwards. Not shown are the α-globin-like ζ globin genes and the α-globin genes whose expression starts
early in embryogenesis. c. Classification of hemoglobinopathies and thalassemia. Hemoglobinopathies result from mutations that change the primary
structure of globin. The most common examples are HbS (HBB glu6val), HbC (HBB glu6lys), and HbE (HBB glu26lys). Rare structural variants affect the
oxygen delivery functions of the molecule, its stability and its resistance to oxidation. Thalassemia is caused by mutations that affect transcription
and translation of any globin gene by nearly all possible mechanisms. They lead to decreased or absent production of a globin subunit; α and β
thalassemia are most common. In all thalassemias the phenotype is a consequence of imbalanced synthesis of globin subunits allowing globin
unincorporated into a tetramer to precipitate and otherwise damage the erythrocyte. About 1600 structural variants and thalassemia mutations have
been cataloged in The Hemoglobin Variant Database [1]. All thalassemias and hemoglobinopathies can interact in various ways and many different
compound heterozygous conditions occur. (Adapted from [51])
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cell anemia, a medication that can stimulate HbF pro-
duction. Transfusion therapy causes excess iron depos-
ition and organ dysfunction, and also alloimmunization. It
requires safe and effective blood banking which is a chal-
lenge in developing economies. Hydroxyurea is not effect-
ive in most patients with severe β thalassemia.
Stem cell transplant can “cure” both disorders. The

best results are with identical sibling matched donors.
Haploidentical and unrelated stem cell donors have wid-
ened the availability of transplants but with poorer re-
sults. In sickle cell anemia, the underrepresentation of
donors with a similar genetic population structure as re-
cipients reduces the donor pool.

Using genomics to find therapeutic targets
Phenotypic heterogeneity of the β hemoglobinopathies
In sickle cell anemia, every patient has the identical HbS
mutation; in thalassemia, many different mutations can
cause the disease. Nevertheless, even amongst patients
with the same thalassemia mutation, the clinical course
can vary, sometimes markedly. This heterogeneity compli-
cates prognostication, management and clinical trials.
The most potent genetic modifiers of the course of β he-

moglobinopathies lie within the globin gene complexes.
For example, concomitant α thalassemia modifies the
phenotype of sickle cell anemia and β thalassemia. In
sickle cell anemia, it reduces mean cell HbS concentration
and in β thalassemia it decreases globin chain imbalance.
The phenotype of sickle cell anemia-α thalassemia has
been well described [7, 8]. HbS concentration in sickle
cell anemia-α thalassemia is less than in sickle cell
anemia reducing polymer-induced damage, anemia, and
the complications of disease closely associated with the
rate of hemolysis. However, complications associated
with blood viscosity are increased, perhaps because
total hemoglobin level increases [9, 10]. The complexity
of the relationship between hemoglobin concentration,
cell density and disease complications was further dem-
onstrated in a clinical trial of a Gardos ion channel in-
hibitor that reduces cation transport and cell density
[11]. In a phase III trial (NCT00102791), the drug had
the expected effects of reducing cell density and
hemolysis, and increasing hemoglobin levels. Yet, there
was no clinical improvement and vasoocclusive epi-
sodes increased in the treatment arm, and the trial was
stopped [12].

Genetic association studies
The clinical heterogeneity of β hemoglobinopathies
prompted the application of genetic association studies
to find genes that influenced their phenotypes Most of
the work was focused on sickle cell anemia.

Candidate gene association studies
Initial attempts to define genotype-phenotype rela-
tionships relied on candidate gene analysis, which ex-
amined polymorphisms in genes chosen by an
“educated guess” that the gene might modify some dis-
ease feature. The frequencies of genetic variants in the
candidate genes are then compared between groups
with and without the phenotype of interest. If the vari-
ant is significantly more frequent in people with the
phenotype than an association—not causality—can be
inferred. The scarcity of β hemoglobinopathies limits
the sample size. When a limited number of polymor-
phisms are being tested the statistical analysis is
straightforward. Nevertheless, many caveats that in-
clude heritability of the phenotype of interest, sample
selection, phenotypic definition, population stratification
and linkage disequilibrium (LD) between the polymor-
phisms genotyped and the causal variant—rarely one in
the same—exist [13]. The candidate gene approach has
been applied to search for polymorphisms that correlate
with subphenotypes of sickle cell anemia independent of
HbF and α thalassemia.
Candidate gene association studies have been criticized

for their lack of robustness and replicability [14]. A sum-
mary of the candidate gene associations with common
sub-phenotypes of sickle cell anemia is shown in Table 1.
With some exceptions, validation of much of this work
is weak [8, 14]. A further disappointment of candidate
gene studies is that functional and mechanistic studies
of loci associated with a phenotype have rarely been re-
ported so that most associations have not met the ultim-
ate test of validation as a potential therapeutic target.
The TGF-β/BMP pathway has been identified as a pos-

sible modulator of different subphenotypes of sickle cell
anemia. This is a super-family of genes modulating cell
growth, angiogenesis, endothelial function, cell, and in-
flammation that are integral to the pathophysiology of the
vasculopathy seen in the hemoglobinopathies [15–17]. In-
flammation causes endothelial cell expression of adhesion
molecules such as selectins [18, 19]. Adherence to the vas-
cular endothelium by sickle erythrocytes, leukocytes, and
platelets initiates the process of vasoocclusion leading to
downstream effects of ischemia and reperfusion injury.
Drugs targeting TGF-β signaling have undergone clin-

ical studies [15] for fibrosis and vasculopathy of the lung,
kidneys, and heart. The underlying pathophysiology of
these conditions might overlap with mechanisms that lead
to sickle vasculopathy like pulmonary hypertension, kid-
ney disease, and stroke, and with further research proving
safety and efficacy might warrant investigation as therapy
for sickle cell anemia. Studies of a modified activin type
IIb receptor-Fc fusion protein that inhibits Smad2/3 sig-
naling decreased iron overload, splenomegaly, and bone
pathology in murine β thalassemia, and in preliminary
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studies of sickle transgenic mice (ASH 2014, abstract 113,
Modified ActRIIB-mFc Fusion Protein (murine ortholog of
Luspatercept) Mitigates Sickling and Red Cell Pathology in
a Murine Model of Sickle Cell Disease), reduced some
markers of hemolysis, irreversibly sickled cells, membrane
exposure of phosphatidylserine and splenomegaly [20].

Genome-wide association studies
One drawback of the candidate gene approach is that of
selection bias. Genome-wide association studies (GWAS)
offered an unbiased approach by scanning thousands to

millions of single nucleotide polymorphisms (SNPs) to
find association with a disease trait. Obstacles of applying
GWAS to sickle cell anemia and other hemoglobinopa-
thies include: the limited sample sizes, the issue of LD,
interpreting associations with SNPs when a biological con-
nection is unclear, and dealing with gene-gene and gene-
environment interactions [21].
GWAS have been used in sickle cell anemia to study the

genetic associations of bilirubin [22–24], cholelithiasis
[24], hemolysis [25], HbA2 level [26], tricuspid regurgita-
tion velocity—a surrogate for pulmonary hypertension
[27]—stroke [28] and systemic blood pressure—a surro-
gate for silent ischemic infarct [29]. The results for biliru-
bin and cholelithiasis were robust but expected, and
identified the well know UGT1A gene family as the major
regulator of bilirubin metabolism in African Americans
with sickle cell anemia, as it is in other ethnicities [24].
Another well validated result was the association of a SNP
in NPRL3 with hemolysis in sickle cell anemia [25]. In a
first discovery cohort, a SNP in this gene was associated
with hemolysis at a p value of 10−7. The association was
replicated by GWAS in 2 additional independent cohorts
and by targeted genotyping in a fourth independent cohort.
The HBA1/HBA2 regulatory elements, hypersensitive sites
(HS)-33, HS-40 and HS-48 are located in introns of NPRL3.
The associated SNP was in high LD with SNPs in HS-33
and HS-40 and next to a transcriptional repressor CTCF
binding site. The association with hemolysis remained after
adjustment for HbF and gene deletion α thalassemia. Per-
haps by independently down-regulating expression of the
HBA1/HBA2 genes, variants tagged by this NPRL3 SNP re-
duce hemolysis in sickle cell anemia. Two studies, one in a
normal population and the other in sickle cell anemia,
showed that BCL11A, the HBS1l-MYB interval and variants
in HBB were associated with HbA2 level. However, except
for one SNP 3’ to HBB that was downstream of 3’ HS-1
and the 3D enhancer that had an independent effect on
HbA2 in sickle cell anemia, the association was mediated
through the effect of these loci on HbF level [26, 30].
GWAS have not validated any of the associations

found in candidate gene association studies. This
might be due to the stringency needed to accept an as-
sociation by GWAS as “significant” that is generally
accepted as 10-8, a level difficult to obtain without a
sample size of many thousands or where the associ-
ated SNP has a large effect size.

NextGen sequencing
Massive parallel genomic sequencing approaches allow
variant detection that is not captured by gene array
methods. NexGen sequencing can be applied to the 3
billion bases of the whole genome, the 30 million bases of
the exome or to the transcriptome (RNA-seq).

Table 1 Candidate genes and subphenotypes of sickle
cell anemia

Disease sub-
phenotype

Genes involved References

Stroke, silent
infarction

ANXA2, TGFBR3, TEK increased
stroke risk

[115]

ADCY9 decreased stroke risk

TGFBR3, BMP6, SELP, and others [100]

VCAM1 [116]

IL4R, TNF, ADRB2, VCAM1, LDLR and
others

[117]

Pain events MBL2 [118, 119]

COMMD7 [120]

Acute chest
syndrome

TGFBR3, SMAD [121]

HMOX [122]

eNOS [123]

GST [124]

COMMD7 [120]

Infections MBL2-low producing variants
protective

[125]

TGFB/SMAD/BMP pathway [126]

CCL5 [127]

HLA [128, 129]

Osteonecrosis TGFB/SMAD/BMP pathway, KL, ANXA2 [130, 131]

Priapism KL [132]

TGFBR3, AQP1, and ITGAV [133]

Leg ulcers KL, TGFBR3, TEK [134]

HLA-B35 [135]

Renal disease MYH9, APOL1 [136]

BMPR1B [137]

Bilirubin/cholelithiasis UGTA1A [22, 23,
138]

Pulmonary
hypertension

ACVRL1, BMP6, ADRB1 [139]

MAPK8 [140]

Adapted from [8, 14]

See text for further discussion. Many associations have been found but few
have been definitively validated [14] and the functional or mechanistic basis of
these associations have not been reported
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Whole exome sequencing was used to look for variants
associated with stroke in sickle cell anemia [28]. There
were 294 SNPs and 6 insertion-deletion variants that in-
cluded 11 variants within 250 kb of at least 1 SNP identi-
fied by GWAS as correlating with stroke risk. A SNP in
PON1 was previously associated with increased risk of
strokes in adults [31, 32]. SNPs in GOLGB1 ENPP1 were
validated but further confirmation and functional assess-
ments of these genetic polymorphisms are needed to elu-
cidate pathways involved in stroke pathogenesis and
potentially direct targets for drug discovery.
Whole exome sequencing targets only 1 % of the gen-

ome, and most SNPs fall outside of exomes. For many
traits like HbF, variation in regulatory regions—the regu-
lome— have proven critical. Not all exons are covered in
exome arrays or whole exome scans, so variants residing
in the excluded exons will be missed. As the cost for
whole genome sequencing falls below $1000 US the ap-
plication of this technology will expand.
One study compared high-density exon arrays with

RNA-seq to assess the peripheral blood transcriptome in
sickle cell anemia [33]. There was 64 % concordance be-
tween exon array and RNA-seq technology for assessing
differentially expressed transcripts. RNA-seq detected a
higher magnitude of differential expression than exon
arrays and was capable of detecting novel transcript vari-
ants in previously unannotated genomic regions.
The singular success of GWAS in β hemoglobinopa-

thies was the totally unexpected discovery of the associ-
ation of SNPs in BCL11A with HbF. This observation
was first made in a very small number of carefully se-
lected normal samples [34] and has since been widely
replicated, studied functionally and mechanistically, and
is now the subject of studies applying this basic observa-
tion to treatment.

The genomics of HbF regulation and its application to
therapeutics
HbF is the major modulator of β hemoglobinopathies.
Infants with sickle cell disease and β thalassemia are
asymptomatic until HbF expression wanes as HBB ex-
pression begins to predominate [35].
HbF is the dominant hemoglobin of the fetus. Following

birth, HbF is nearly totally replaced by HbA and the stable
“adult” levels of HbF are normally achieved by age
6 months. In the β hemoglobinopathies, stable adult levels
of HbF are not achieved until age 5 years in patients with
sickle cell anemia of African origin while 10 years is
needed before stable levels are seen in carriers of the
Arab-Indian (AI) HBB haplotype [36]. The switch from
HbF to HbA involves repression of HBG2 and HBG1
followed by up-regulation of HBB expression. It is never
totally complete and some clones of erythroid precursors
continue to produce progeny capable of expression of the

HbF genes. Trace amounts of HbF, usually <1 %, are found
in normal adults. Perhaps many clones are capable of ex-
pressing HbF but the amounts are below the current
limits of detection of about 4 pg./cell. This could have im-
portant therapeutic applications as loci still able to express
HbF might be more amenable to therapeutic up-
regulation than loci where expression is nil.
HbF can persist at higher levels in adults. as part of a

group of conditions known as hereditary persistence of
HbF (HPFH) [37]. Perhaps the best example of the critical
role HbF plays in the modulation of sickle cell anemia
comes from the interaction of gene deletion HPFH with
the HbS gene. Patients with the gene-deletion form of
HPFH, who are also heterozygous for the HbS, have about
30 % HbF (10 pg./cell) distributed uniformly among all
their erythrocytes [38]. They are clinically asymptomatic
with nearly normal hematologic parameters [38]. Com-
pound heterozygote for β thalassemia and HPFH are also
mildly affected [39]. Non-gene deletion forms of HPFH are
usually associated with a more modest increase in HbF and
their HbF is usually distributed unevenly amongst erythro-
cytes. This is known as heterocellular HPFH [40]. Any
degree of increase in HbF is likely to have clinically and
therapeutically meaningful impact in sickle cell anemia
[41–43]. Nevertheless, the distribution of HbF amongst the
erythrocyte population of F-cells— erythrocytes containing
measurable HbF— using flow cytometry is highly individu-
alized and in patients with sickle cell anemia, individuals
with the same total concentration of HbF can have very
different erythrocyte distributions of HbF, perhaps explain-
ing the heterogeneity of phenotypes found in patients with
similar total HF level [44]. The therapeutic ideal for treat-
ments directed at inducing high levels of HbF gene expres-
sion should therefor mimic the level and distribution of
HbF seen in HbS-gene deletion HPFH where each erythro-
cyte has sufficient HbF to thwart deoxyHbS polymerization
under physiological circumstances [38].
The genetics regulating the switch from HbF to HbA

production involve multiple transcription factors inter-
acting with each other and the promoters and en-
hancers of the β-like globin genes, and the epigenetic
milieu of the chromatin involved [40, 45–51]. Modula-
tion of HbF gene expression involves interaction of
many different proteins including the transcription factors
KLF1 and BCL11A, and the hematopoietic regulatory fac-
tor MYB with each other and with other genetic elements,
like the master regulator of erythroid development GATA
1, and other co-repressor complexes that involve
chromatin-modeling and epigenetic modifiers. Expanded
and stress erythropoiesis is also needed for maximal expres-
sion of HbF [52, 53]. The complexity of these interactions
and the transcription factors involved are shown in Fig. 2.
The emerging network of HbF regulation has provided new
insights and leads for therapeutic HbF reactivation. A
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3.5 kb interval 5’ to HBD is an area with BCL11A-binding
motifs suspected of having an important role in
hemoglobin switching and whose deletion has been associ-
ated with increased HbF [54–56].
One of the first important discoveries linking genetic

polymorphism to the variable clinical phenotype of β he-
moglobinopathies was the finding that the sickle and β
thalassemia globin mutations were present on different
haplotypes of HBB [21, 57–59]. These haplotypes iden-
tified centers of origin of the HbS gene in Africa, the
Middle East, and India. Some of the regional and ethnic
differences in the severity of sickle cell anemia were as-
sociated with the HBB haplotype and this was explained
by the HbF levels characteristic of each haplotype. The
highest HbF levels in patients with sickle cell anemia
are found in Eastern Saudi Arabia and Western India
and in the West African region of Senegal. The AI and
Senegal haplotypes extant in these regions have a C-T
polymorphism 158 bp 5’ to HBG2 and known as the
Xmn1 polymorphism (rs7482144) [60–62]. The Xmn1
polymorphism explains 2-10 % of the HbF variation
and is associated with increased expression of HBG2
only [34, 63, 64]. Further analysis of the association of

this polymorphism and HbF in African Americans with
sickle cell anemia showed that rs10128556 downstream
of HBG1 was more strongly associated with HbF than
the Xmn1 site itself, and that conditioning the analysis
on rs10128556 rendered the effect of Xmn1 on HbF in-
significant. This suggested that the Xmn1 site is not the
functional variant but that rs10128556 or a variant in
LD with it might be the functional variant [65].
Although the AI and Senegal haplotypes share the

Xmn1 restriction site polymorphism they differ in
other polymorphisms linked to the HBB gene cluster.
HbF in carriers of the AI haplotype is about twice as
high as that in the African-origin Senegal haplotype.
This is responsible for the less severe disease observed
in children with the AI haplotype where HbF levels
are about 30 % [62, 66–68]. When HbF falls as these
patients become adults to levels about 20 %, their dis-
ease begins to resemble that seen in typical African-
origin patients.
The molecular basis of high HbF concentrations in the

AI compared with other HBB haplotypes of sickle cell
disease is unknown. Compound heterozygotes with
HbS-β0 thalassemia where the HbS gene is on the AI

Fig. 2 HbF Gene Expression is controlled by Cis- and Trans-acting elements. Shown, not to scale is the LCR, the γ-globin genes and the β-globin
gene. γ-Globin and α globin (not shown) form HbF while β-globin and α globin form adult HbA. The major known transcription factors that have
been implicated in hemoglobin switching are shown along with some of their interactions. One model holds that BCL11A participates as part of
complexes of transcription factors like those shown to regulate the HbF to HbA switch. KLF1 binds the BCL11A promoter activating its expression
and as shown has a dual effect switching by directly on activating HBB while repressing HBG2 and HBG1 indirectly by activating BCL11A. The
cartoon does not illustrate the 3 dimensional interactions and the chromosome dynamics that include histone modification and methylation of
critical regions of the HBB gene cluster.that are integral components of the transcription process. (Figure provided by and adapted from Orkin,
SH, From GWAS-identified locus to reversing the fetal hemoglobin switch: Functional and genetic validation, in, Genomics: Gene discovery and
clinical applications for cardiovascular, lung, and blood diseases. Sept. 2011, NIH, Bethesda, MD)

Ngo and Steinberg BMC Medical Genomics  (2015) 8:44 Page 6 of 13



haplotype have similarly increased HbF levels suggesting
that only a single AI haplotype is needed [69]. In sickle
cell trait and the AI haplotype, HbF is normal, although
BFU-e make more HbF than BFU-e from controls [70].
The high HbF associated with the AI haplotype requires
hemolytic anemia in addition to the proper genetic back-
ground [49, 71]. Based on the known association of the
HBB haplotype with HbF and the effects of polymor-
phisms of BCL11A and MYB on HbF gene expression, it is
likely that the novel regulatory loci governing HbF in the
AI haplotype are both cis and trans to the HBB gene
cluster. The autochthonous nature of the HbS gene as-
sociated with the AI haplotypes implies that among the
genetic differences distinguishing Saudi Arabs from
other populations with sickle cell disease, a determinant
that allows increased expression of the HbF genes is
linked to the haplotype of the HBB gene cluster and
differs from the functional variant in the Senegal haplo-
type [36, 72, 73]. Variation in the know trans-acting
QTL, BCL11A and MYB did not distinguish high from
low HbF AI haplotype patients and accounted for less
than 10 % of their HbF variance. Variants in KLF1 did
not explain HbF differences in the AI haplotype [36].
The nature of unique Arab or Indian trans- or cis-
acting loci has yet to be defined.

Trans-acting HbF QTL
BCL11A:Genetic association studies using HbF as a
phenotype have been propitious because of the high her-
itability of HbF and F-cells, the stability and quantitative
nature of the phenotype and because—as luck would
have it—a few quantitative trait loci explained between
10 to 50 % of HbF variability in a population [74, 75].
The GWAS that first found the association between

BCL11A and HbF overcame the obstacle of having a
small sample size by taking subjects from the extremes
of HbF distribution scale [34]. Blood samples from
179 normal unrelated subjects from a United Kingdom
twin’s registry, who were in the upper and lower 5th

percentile at the extremes of F-cells were studied and
a novel and totally unexpected QTL associated with
increased F-cells mapped to a region on chromosome
2p containing the BCL11A gene. Two other regions on
chr 6q23 and 11p15, the former containing the
HBS1L-MYB region and the latter, the Xmn1 poly-
morphism, were known from prior linkage studies to
influence HbF [60, 62, 63]. These findings were rapidly
replicated by a larger GWAS studies looking for poly-
morphic associations with HbF from subjects with β
thalassemia from Sardinia, in African Americans and
in Chinese and Thai carriers of β thalassemia, and in
HbE-β thalassemia [64, 76–81]. Functional studies
showed that BCL11A protein is a repressor of γ-globin
gene expression, acting at a distance and cooperating

with the transcription factors GATA-1, FOG-1, and
SOX6 [82, 83]. Discovery of BCL11A as a HbF QTL
was proof of principle that GWAS could be used as an
unbiased tool to define genotype-phenotype relationships.
It is now known that BCL11A expression is regulated

by erythroid-specific enhancers in its 2nd intron. The
enhancer elements contain 3 hypersensitive sites (HS)
located +62, +58 and +55 kb from the transcription
initiation site [84]. Two SNP haplotypes of the en-
hancer elements were associated with HbF levels in
African American patients with sickle cell anemia. The
strongest association with HbF levels in African Americans
with sickle cell anemia was with rs1427407 in HS +62. Six
BCL112A enhancer SNPs and their haplotypes were stud-
ied in Saudi Arabs from the Eastern Province and Indian
patients with AI haplotype, African Americans, and Saudi
Arabs from the Southwestern Province. Four enhancer
SNPs (rs1427407, rs6706648, rs6738440, and rs7606173)
and their haplotypes were consistently associated with HbF
levels. The distributions of haplotypes differ in the 3
cohorts but not their genetic effects: the haplotype
TCAG was associated with the lowest HbF level and
the haplotype GTAC was associated with the highest
HbF level. Differences in HbF levels between carriers
of these haplotypes in all cohorts were approximately
6 %. Common HbF BCL11A enhancer haplotypes in pa-
tients with African origin and AI sickle cell anemia ap-
peared to have similar effects on HbF but did not explain
the differences in HbF among the HBB haplotypes [85].
HBS1L-MYB: The 3rd well established QTL modula-

ting HF expression is the HBS1L-MYB intergenic region
(HMIP) on chr6q23. This QTL was localized to a group
of variants in tight LD in a 24-kb block referred to as
HMIP-2 [63]. MYB has pleiotropic effects on erythroid
traits like erythrocyte count, mean corpuscular volume,
mean corpuscular hemoglobin, HbA2 levels, and also
with platelet and monocyte counts. The causal polymor-
phisms reside in 2 clusters upstream of MYB [80, 86].
Functional studies in transgenic mice and primary human
erythroid cells provide evidence that the SNPs at these
two regions disrupt binding of key erythroid enhancers
affecting long-range interactions with MYB and MYB
expression and provide a functional explanation for the
effects of this enhancer on HbF. A three-base pair
(3 bp) deletion in HMIP-2 is one functional element in
the MYB enhancers accounting for increased HbF
expression in individuals who have the sentinel SNP
rs9399137 common in Europeans and Asians but less
frequent in African-origin populations. The DNA frag-
ment encompassing the 3 bp deletion had enhancer-like
activity that was augmented by the introduction of the
3 bp deletion [80]. Rare missense mutations of MYB were
associated with increased HbF in African Americans with
sickle cell anemia [65].
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MYB is regulates hematopoiesis [87] and modulates
HbF expression indirectly through alteration of the kin-
etics of erythroid differentiation and directly via activa-
tion of KLF1 and other repressors [88, 89]. When MYB
levels are reduced erythroid differentiation is accelerated
leading to release of early erythroid progenitor cells that
are still synthesizing predominantly HbF. The wider role
of MYB in hematopoiesis and the lack of a known
erythroid-specific isoform limit the attractiveness of this
gene as a target for modulating HbF expression.
KLF1: The association of KLF1 with HbF levels was

first noted in a Maltese family with β thalassemia and an
HPFH phenotype [90]. A locus on chromosome 19p13
containing KLF1 was identified and gene expression pro-
filing confirmed KLF1 as the HbF modifier. Individuals
with HPFH were heterozygous for a nonsense mutation
in KLF1 that disrupted its DNA-binding domain. Many
reports followed of different mutations in KLF1 associ-
ated with increases in HbF [91]. HbF increases second-
ary to KLF1 mutations are mediated through the effects
of KLF1 on globin gene expression and also through its
effects on erythropoiesis, the membrane or on cell me-
tabolism [92–94]. KLF1 variants did not appear to be as-
sociated with HbF in β hemoglobinopathies based on
the results of GWAS but with the small number of cases
studied, rare variants are easily missed. In contrast to
studies in Africa and Arab patients, KLF1 mutations
were overrepresented in a southern Chinese population
with β thalassemia [95]. Two mutations were also associ-
ated with a β thalassemia intermedia phenotype in β-
thalassemia homozygotes.
KLF1 is a direct activator of BCL11A and is also essen-

tial for HBB expression [96–98]. Collectively, studies sug-
gest that KLF1 is key in the switch from HbF to HbA
expression; activating HBB directly and silencing HBG1
and HBG indirectly via activation of BCL11 [99]. The pro-
tean effects of KLF1 make it a less attractive therapeutic
target than the erythroid-specific enhancers of BCL11A.
One application of genomics is to use the results in pre-

dictive or prognostic models. SNPs in candidate genes
predicted the risk of stroke in sickle cell anemia using
Bayesian network analysis [100]. Based on focused geno-
typing of HbF- associated QTL and on GWAS, genetic
scores were developed for predicting the likelihood of
acute painful episodes in sickle cell anemia, hematologic
severity β thalassemia, the severity of HbE-β0 thalassemia,
and for predicting HbF levels in sickle cell anemia [64, 76,
101–103].

Genomic approaches to HbF induction
Some possible approaches to therapeutically increas-
ing HbF levels are shown in Table 2. Disruption of
bcl11a in sickle mice abrogates the phenotype of sickle
cell disease; about 30 % HbF is present in each sickle

erythrocyte [47]. Biallelic excision of the bcl11a eryth-
roid enhancers using TALENs reduced the level of
bcl11a transcript and protein and increased the ratio
of embryonic murine globin—a surrogate for human γ
globin— to adult globin by 364-fold [84]. Similar ap-
proaches are being used to develop this technology as
a means of increasing HbF in hemoglobinopathies.
The LCR enhancers have an important role control-

ling the expression of the β-like globin genes (Fig. 1).
Its interaction with promoters of these genes modulate
globin gene switching. This interaction is mediated by
long-range protein interactions and among the key pro-
teins mediating these interactions and a key element in
the assembly of transcriptional activators is the LIM
domain-binding protein of Ldb1 [104]. This protein
does not bind DNA and has an amino acid N-terminal
domain needed for multimerization. In erythroid cells,
LDB1 interacts with LIM domain only 2 (LMO2) and
the DNA-binding partners GATA1 and TAL1. Tether-
ing the self-association domain of Ldb1 to artificial
zinc-finger proteins that were targeted to β-globin pro-
moter allowed activation of this gene and showed the
importance of chromatin looping in transcription [105].
Furthermore, targeting the HbF gene promoters using
forced looping strategies allowed their reactivation to
the degree that γ globin accounted for about 85 % of
total globin synthesis, while adult globin expression
was reciprocally reduced [106]. This technology has the
potential for reactivating HbF gene to therapeutically
useful levels.

Other pathophysiology-based therapeutic approaches
The phenotype of sickle cell anemia is due to insuffi-
cient blood flow. Disrupting the interaction of sickle
cells with endothelium should improve flow. In a phase
II study (NCT00773890), an oral P-selectin blocker
used chronically lowered plasma sVCAM and showed a
trend toward improving microvascular flow [107]. A
phase II trial of a pan-selectin blocker (NCT01119833)
used at the time of an acute event to reduce the length
of sickle vasoocclusive events has yet to report the full
results, but a phase III study is planned. A block-
copolymer was used acutely to improve flow and de-
crease sickle vasoocclusion (NCT00004408). The first
pilot study lead to a phase III trial that showed some
efficacy in younger patients and another phase III trial
(NCT017378140) is underway [108, 109]. Finally, a
phase II study of an anti-P-selectin antibody is ongoing
(NCT01895361). These studies, even if successful, are
years away from clinical application. Logic suggests that
agents that sustain flow and prevent the initiation of
vasoocclusion would be more successful than agents
given after an acute vasoocclusive event has started,
nevertheless animal studies have shown that this latter
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approach might be useful [110]. Logic also has it that
preventing HbS polymerization would abrogate the need
for any treatment that targets events downstream of this
causative event.
Other early phase trials are based on improving the in-

flammation that is a result of sickle vasoocclusion and
vasculopathy by reducing the activation of invariant nat-
ural killer T-cells (NCT01788631) and using a statin as
an anti-inflammatory (NCT01702246).
Novel approaches to treating β thalassemia based on

pathophysiology have recently been summarized [111].
In distinction to sickle cell anemia, ineffective erythro-
poiesis is a major feature of severe β thalassemia and
contributes to the anemia that is the cardinal feature of
this disorder. So, as expected, one focus of drug develop-
ment has been on repairing anemia. Most of the studies
of novel therapeutic have been done in murine β thalas-
semia and work in man is lags behind studies in sickle
cell disease. Among the potential treatment are JAK2 in-
hibitors, which decrease erythropoiesis, at least in thalas-
semic mice, and is the subject of a phase IIa trial
(NCT02049450). In man, the enlarged spleen is a major
site of extramedullary erythropoiesis and red cell destruc-
tion. As discussed above, a receptor-II trap ligand inhibits
Smad2/3 by targeting gdf11 and improves anemia in thal-
assemic mice by decreasing stress erythropoiesis. This
agent is also in a phase IIa trial (NCT01571635) [20].
Another general approach is to target iron overload

that contributes to ineffective erythropoiesis by using
hepcidin agonists [112], reducing hepcidin expression by
targeting tmprss6 a protease that attenuates its expres-
sion [113], and using apo-transferrin to decrease labile
plasma iron [114].

Review and conclusions
Genomic research and bioinformatics have evolved
rapidly. The technological advancements in genetics
have increased our understanding of hemoglobin gene
regulation and the influences of genetic variation on
disease phenotypes but have proven less valuable for
identifying new therapeutic targets other than those
focused on HbF regulation. The greatest successes of
genomics have been those surrounding HbF gene
regulation where the initial discoveries have been
amply validated and causal variants identified by
in vitro and in vivo mechanistic studies. Although
molecular-based techniques such as gene replacement
therapy, somatic cell reprogramming, and stem cell
transplant are advancing, the application of these
strategies require substantial financial and techno-
logical resources. This poses serious challenges for
countries where most patients with severe hemoglobin
disorders reside. For these reasons, pharmacologic ap-
proaches to optimize HbF switching may be the most
attractive strategy for controlling these diseases.
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Table 2 Approaches to inducing HbF

Method Drug or locus Features References

Pharmacologic Hydroxyureaa Regulatory approval, inexpensive, ineffective in severe β thalassemia,
inconsistent response

[141]

HQK-1001 (sodium 2,2-
dimethylbutyrate)

HbF increase of 5-21 % in HbE-β0 thalassemia [142]

Decitabine ? Epigenetic modification, possible oral route [143]

Pomalidomide Immunomodulatory agent [144]

Scriptaid ? Epigenetic modification [145]

SAHA ? Epigenetic modification [146]

Non-
pharmacologic

BCL11A See text See text

MYB See text See text

Direct repeats (DRED) repressors Point mutations cause HPFH, forced expression increases HbF in sickle mice [147, 148]

LCR/HBG promoters See text See text
aHydroxyurea is the sole agent with widespread regulatory approval. Decitabine, scriptaid and SAHA are histone deacetylase inhibitors and other drugs of this
general class have also been associated with HbF induction
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