Skip to main content

Table 5 Performance comparison using sequence formulation techniques using F. vesca and R. chinensis

From: N6-methyladenine identification using deep learning and discriminative feature integration

Species

Methods

ACC (%)

SN (%)

SP (%)

MCC

F. vesca

TAC

90.52

93.32

83.21

0.811

NAC

85.89

93.87

87.92

0.792

Kmer

85.90

88.45

80.13

0.786

PseSNC

80.13

83.34

79.93

0.774

PseDNC

90.95

92.65

87.83

0.788

PseTNC

89.32

91.34

85.54

0.808

Hybrid feature (without feature selection)

95.87

97.75

90.86

0.903

Hybrid feature (with feature selection)

97.70

98.01

97.30

0.951

R. chinensis

TAC

88.52

90.14

83.21

0.773

NAC

85.89

75.32

87.32

0.736

Kmer

85.90

80.45

86.43

0.750

PseSNC

79.13

81.34

76.63

0.721

PseDNC

88.95

89.65

81.83

0.792

PseTNC

84.98

83.56

85.99

0.712

Hybrid feature (without feature selection)

91.75

93.09

90.33

0.891

Hybrid feature (with feature selection)

95.75

96.45

94.55

0.921