Skip to main content

Table 5 Results on predictive performance metrics for metabolic syndrome prediction analysis using machine learning algorithms based on epidemiological, nutritional and genome-wide polygenic risk score (gPRS)

From: Prediction of metabolic syndrome using machine learning approaches based on genetic and nutritional factors: a 14-year prospective-based cohort study

Model

Algorithm

N

Event N

Pred N

AUC (95% CIs)

p-value (H0: AUC = 0.5)

Sensitivity

Specificity

PPV

NPV

Cutoff

DeLong

p-value

F1-score

Model 1 = Epidemiological factors + dried laver

Cox

1690

1430

1419

0.808 (0.779–0.837)

< 0.001

0.760

0.708

0.839

0.114

-0.285

Ref.

0.798

 

DNN

1690

1430

1017

0.864 (0.843–0.885)

< 0.001

0.693

0.896

0.973

0.346

0.434

< 0.001

0.809

 

SVM

1690

1430

1231

0.879 (0.858–0.900)

< 0.001

0.827

0.792

0.82

0.083

-0.742

< 0.001

0.823

 

SGD

1690

1430

889

0.653 (0.619–0.688)

< 0.001

0.569

0.712

0.916

0.231

0.443

< 0.001

0.702

 

RAF

1690

1430

1437

0.989 (0.980–0.998)

< 0.001

1.000

0.973

0.995

1

0.444

< 0.001

0.997

 

NBA

1690

1430

1156

0.784 (0.752–0.816)

< 0.001

0.756

0.715

0.935

0.346

0.077

0.021

0.836

 

ADB

1690

1430

1136

0.847 (0.823–0.872)

< 0.001

0.754

0.777

0.949

0.365

0.336

< 0.001

0.840

Model 2 = Epidemiological factors + dried laver + genome-wide polygenic risk score (gPRS) Z-score 1

Cox

1690

1430

1369

0.826 (0.799–0.853)

< 0.001

0.838

0.669

0.84

0.128

-0.458

Ref.

0.839

 

DNN

1690

1430

1144

0.881 (0.861–0.902)

< 0.001

0.777

0.873

0.971

0.416

0.362

< 0.001

0.863

 

SVM

1690

1430

1310

0.885 (0.864–0.905)

< 0.001

0.800

0.835

0.824

0.079

-0.608

< 0.001

0.812

 

SGD

1690

1430

1108

0.701 (0.667–0.734)

< 0.001

0.706

0.612

0.909

0.273

0.374

< 0.001

0.795

 

RAF

1690

1430

1437

0.990 (0.981–0.999)

< 0.001

1.000

0.973

0.995

1

0.448

< 0.001

0.997

 

NBA

1690

1430

1126

0.797 (0.766–0.828)

< 0.001

0.740

0.742

0.94

0.34

0.084

0.005

0.828

 

ADB

1690

1430

1124

0.869 (0.846–0.891)

< 0.001

0.755

0.823

0.959

0.378

0.358

< 0.001

0.845

Model 3 = Epidemiological factors + dried laver + gPRS Z-score 2

Cox

1690

1430

1585

0.867 (0.843–0.891)

< 0.001

0.816

0.773

0.842

0.095

-0.191

Ref.

0.829

 

DNN

1690

1430

1258

0.910 (0.893–0.927)

< 0.001

0.857

0.877

0.974

0.525

0.350

< 0.001

0.912

 

SVM

1690

1430

1376

0.907 (0.888–0.926)

< 0.001

0.864

0.827

0.831

0.089

-0.699

< 0.001

0.847

 

SGD

1690

1430

1152

0.802 (0.772–0.832)

< 0.001

0.753

0.708

0.934

0.342

0.452

< 0.001

0.834

 

RAF

1690

1430

1437

0.987 (0.977–0.998)

< 0.001

1.000

0.973

0.995

1

0.470

< 0.001

0.997

 

NBA

1690

1430

1228

0.839 (0.811–0.867)

< 0.001

0.811

0.750

0.946

0.42

0.071

0.005

0.873

 

ADB

1690

1430

1204

0.881 (0.857–0.904)

< 0.001

0.804

0.788

0.954

0.422

0.323

0.017

0.873

Model 4 = Epidemiological factors + dried laver + gPRS Z-score 3

Cox

1690

1430

1320

0.966 (0.954–0.979)

< 0.001

0.909

0.923

0.985

0.649

0.225

Ref.

0.945

 

DNN

1690

1430

1309

0.960 (0.946–0.974)

< 0.001

0.909

0.965

0.993

0.659

0.390

0.094

0.949

 

SVM

1690

1430

1556

0.975 (0.965–0.986)

< 0.001

0.923

0.950

0.836

0.037

-0.538

0.002

0.877

 

SGD

1690

1430

1339

0.958 (0.944–0.972)

< 0.001

0.917

0.896

0.98

0.664

0.470

< 0.001

0.947

 

RAF

1690

1430

1437

0.990 (0.981–0.999)

< 0.001

1.000

0.973

0.995

1

0.454

< 0.001

0.997

 

NBA

1690

1430

1339

0.944 (0.927–0.962)

< 0.001

0.914

0.873

0.975

0.647

0.045

0.002

0.944

 

ADB

1690

1430

1387

0.977 (0.966–0.987)

< 0.001

0.954

0.912

0.983

0.782

0.171

< 0.001

0.968

Model 5 = Epidemiological factors + dried laver + gPRS Z-score 4

Cox

1690

1430

1397

0.987 (0.978–0.996)

< 0.001

0.967

0.950

0.99

0.84

0.087

Ref.

0.978

 

DNN

1690

1430

1386

0.985 (0.975–0.995)

< 0.001

0.965

0.977

0.996

0.836

0.419

0.237

0.980

 

SVM

1690

1430

1591

0.989 (0.980–0.998)

< 0.001

0.986

0.958

0.84

0.061

-0.998

0.428

0.907

 

SGD

1690

1430

1384

0.980 (0.970–0.991)

< 0.001

0.957

0.946

0.989

0.801

0.423

0.001

0.973

 

RAF

1690

1430

1437

0.993 (0.985–1.000)

< 0.001

1.000

0.973

0.995

1

0.466

0.082

0.997

 

NBA

1690

1430

1391

0.973 (0.960–0.986)

< 0.001

0.962

0.935

0.988

0.813

0.035

0.008

0.975

 

ADB

1690

1430

1410

0.994 (0.987–1.000)

< 0.001

0.982

0.977

0.996

0.907

0.318

0.016

0.989

Model 6 = Epidemiological factors + dried laver + gPRS Z-score 5

Cox

1690

1430

1405

0.991 (0.983–0.999)

< 0.001

0.976

0.965

0.994

0.881

0.132

Ref.

0.985

 

DNN

1690

1430

1396

0.989 (0.980–0.998)

< 0.001

0.971

0.973

0.995

0.861

0.425

0.105

0.983

 

SVM

1690

1430

1610

0.992 (0.983–1.000)

< 0.001

0.987

0.969

0.841

0.05

-0.826

0.713

0.908

 

SGD

1690

1430

1360

0.984 (0.975–0.992)

< 0.001

0.946

0.969

0.994

0.764

0.455

< 0.001

0.969

 

RAF

1690

1430

1437

0.994 (0.986–1.000)

< 0.001

1.000

0.973

0.995

1

0.445

0.150

0.997

 

NBA

1690

1430

1415

0.980 (0.970–0.991)

< 0.001

0.978

0.938

0.989

0.887

0.019

0.013

0.983

 

ADB

1690

1430

1440

0.993 (0.986–1.000)

< 0.001

1.000

0.962

0.993

1

0.075

0.393

0.996

Model 7 = Epidemiological factors + dried laver + gPRS Z-score 6

Cox

1690

1430

1415

0.991 (0.984–0.999)

< 0.001

0.984

0.969

0.994

0.916

0.030

Ref.

0.989

 

DNN

1690

1430

1690

0.991 (0.984–0.999)

< 0.001

0.969

0.985

0.846

N/A

0.000

0.929

0.903

 

SVM

1690

1430

1633

0.991 (0.982–1.000)

< 0.001

0.985

0.977

0.841

0.018

-0.738

0.998

0.907

 

SGD

1690

1430

1408

0.987 (0.978–0.996)

< 0.001

0.978

0.965

0.994

0.89

0.406

0.005

0.986

 

RAF

1690

1430

1433

0.992 (0.982–1.000)

< 0.001

0.998

0.977

0.996

0.988

0.615

0.986

0.997

 

NBA

1690

1430

1422

0.984 (0.974–0.993)

< 0.001

0.986

0.946

0.99

0.918

0.008

0.024

0.988

 

ADB

1690

1430

1434

0.992 (0.985–1.000)

< 0.001

0.999

0.977

0.996

0.992

0.353

0.683

0.997

Model 8 = Epidemiological factors + dried laver + gPRS Z-score 7

Cox

1690

1430

1396

0.992 (0.985–0.999)

< 0.001

0.973

0.981

0.996

0.867

0.208

Ref.

0.984

 

DNN

1690

1430

1690

0.991 (0.983–0.999)

< 0.001

0.978

0.977

0.846

N/A

0.000

0.342

0.907

 

SVM

1690

1430

1633

0.991 (0.982–1.000)

< 0.001

0.979

0.981

0.842

0.035

-0.789

0.411

0.905

 

SGD

1690

1430

1408

0.988 (0.981–0.996)

< 0.001

0.978

0.965

0.994

0.89

0.367

0.005

0.986

 

RAF

1690

1430

1434

0.994 (0.985–1.000)

< 0.001

0.999

0.977

0.996

0.992

0.615

0.306

0.997

 

NBA

1690

1430

1412

0.984 (0.975–0.993)

< 0.001

0.978

0.950

0.991

0.888

0.009

0.023

0.984

 

ADB

1690

1430

1431

0.994 (0.986–1.000)

< 0.001

0.997

0.977

0.996

0.981

0.284

0.103

0.996

  1. Epidemiological factors include sex, age, alcohol intake, energy intake, marital status, education status, income status, and smoking status.
  2. Cox, Cox multivariable regression; DNN, deep neural network; SVM, support vector machine; SGD, stochastic gradient descent; RAF, random forest; NBA: Naïve Bayes classifier; ADB, AdaBoost; AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value; gPRS, genome-wide polygenic risk score.
  3. gPRS Z-score 1 based on p-value < 0.0001, gPRS Z-score 2 based on p-value < 0.001, gPRS Z-score 3 based on p-value < 0.01, gPRS Z-score 4 based on p-value < 0.05, gPRS Z-score 5 based on p-value < 0.1, gPRS Z-score 6 based on p-value < 0.2, and gPRS Z-score 7 based on p-value < 1.0.