Skip to main content

Table 3 Logistic regression analysis to predict the risk of RA

From: Serum lncRNA ITGB2-AS1 and ICAM-1 as novel biomarkers for rheumatoid arthritis and osteoarthritis diagnosis

Parameter

β-coefficient

SE

P-value

OR

95% CI

Univariate analysis

ITGB2-AS1

0.838

0.383

0.028

2.313

1.093–4.896

ITGB2 mRNA

2.054

1.024

0.045

7.79

1.048–58.021

ICAM-1

0.0029

0.0011

0.007

1.003

1.001–1.005

Multivariate analysisa

ITGB2-AS1

1.176

0.525

0.025

3.24

1.159–9.061

ITGB2 mRNA

1.79

7.78

0.9

6.024

0.95-52.521

ICAM-1

0.0038

0.0014

0.0075

1.004

1.001–1.006

Constant

− 2.2

    
  1. Chi-square of the best multivariate logistic regression model = 45.146, P = 0.00, adjusted with age and sex as confounders using data of RA patients (n = 43) and healthy controls (n = 22). Bold indicates statistical significance, P < 0.05. a adjusted for age and sex in the multivariate analysis. CI, confidence interval; ICAM-1, intercellular adhesion molecule-1; ITGB2; integrin beta 2 subunit; ITGB2-AS1, integrin subunit beta 2-anti-sense RNA 1; OR, odds ratio; SE, standard error