Skip to main content

Table 1 Complexity analysis of FHE-BLOOM and PHE-BLOOM: Setup overheads are similar in both approaches and grow linearly in the number of patients n and Bloom filter size l which is proportional to the number of SNPs m, i.e., l=−m log(p)/ log(2)2

From: BLOOM: BLoom filter based oblivious outsourced matchings

Approach

DB setup (Client)

Query (Cloud)

Query (Client)

 

Time

Comm

Time

Time

Comm.

Fhe-Bloom

\(\mathcal {O}(n \cdot l / s_{F})~\text {Enc}_{F}\)

\(\mathcal {O}(n \cdot l / s_{F})~\mathrm {C}_{F}\)

\(\mathcal {O}(n \cdot l / s_{F})~\text {Mul}_{F} + \mathcal {O}(n \cdot l / s_{F})~\text {Add}_{F}\)

\(\mathcal {O}(l / s_{F}) ~\text {Enc}_{F} +\mathcal {O}(n) ~ \text {Dec}_{F}\)

\(\mathcal {O}(l / s_{F}+n) ~\mathrm {C}_{F}\)

Phe-Bloom

\(\mathcal {O}(n \cdot l / s_{P})~\text {Enc}_{P}\)

\(\mathcal {O}(n \cdot l / s_{P})~\mathrm {C}_{P}\)

\(\mathcal {O}(n / s_{P}) ~\text {Add}_{P}\)

\(\mathcal {O}(n / s_{P}) ~\text {Dec}_{P}\)

\(\mathcal {O}(n / s_{P}) ~ \mathrm {C}_{P}\)